Spaces:
Runtime error
Runtime error
File size: 52,358 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import copy
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from imaginaire.layers import (Conv2dBlock, HyperConv2dBlock, HyperRes2dBlock,
LinearBlock, Res2dBlock)
from imaginaire.model_utils.fs_vid2vid import (extract_valid_pose_labels,
pick_image, resample)
from imaginaire.utils.data import (get_paired_input_image_channel_number,
get_paired_input_label_channel_number)
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.init_weight import weights_init
from imaginaire.utils.misc import get_and_setattr, get_nested_attr
class Generator(nn.Module):
r"""Few-shot vid2vid generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
"""
def __init__(self, gen_cfg, data_cfg):
super().__init__()
self.gen_cfg = gen_cfg
self.data_cfg = data_cfg
self.num_frames_G = data_cfg.num_frames_G
self.flow_cfg = flow_cfg = gen_cfg.flow
# For pose dataset.
self.is_pose_data = hasattr(data_cfg, 'for_pose_dataset')
if self.is_pose_data:
pose_cfg = data_cfg.for_pose_dataset
self.pose_type = getattr(pose_cfg, 'pose_type', 'both')
self.remove_face_labels = getattr(pose_cfg, 'remove_face_labels',
False)
num_img_channels = get_paired_input_image_channel_number(data_cfg)
self.num_downsamples = num_downsamples = \
get_and_setattr(gen_cfg, 'num_downsamples', 5)
conv_kernel_size = get_and_setattr(gen_cfg, 'kernel_size', 3)
num_filters = get_and_setattr(gen_cfg, 'num_filters', 32)
max_num_filters = getattr(gen_cfg, 'max_num_filters', 1024)
self.max_num_filters = gen_cfg.max_num_filters = \
min(max_num_filters, num_filters * (2 ** num_downsamples))
# Get number of filters at each layer in the main branch.
num_filters_each_layer = [min(self.max_num_filters,
num_filters * (2 ** i))
for i in range(num_downsamples + 2)]
# Hyper normalization / convolution.
hyper_cfg = gen_cfg.hyper
# Use adaptive weight generation for SPADE.
self.use_hyper_spade = hyper_cfg.is_hyper_spade
# Use adaptive for convolutional layers in the main branch.
self.use_hyper_conv = hyper_cfg.is_hyper_conv
# Number of hyper layers.
self.num_hyper_layers = getattr(hyper_cfg, 'num_hyper_layers', 4)
if self.num_hyper_layers == -1:
self.num_hyper_layers = num_downsamples
gen_cfg.hyper.num_hyper_layers = self.num_hyper_layers
# Network weight generator.
self.weight_generator = WeightGenerator(gen_cfg, data_cfg)
# Number of layers to perform multi-spade combine.
self.num_multi_spade_layers = getattr(flow_cfg.multi_spade_combine,
'num_layers', 3)
# Whether to generate raw output for additional losses.
self.generate_raw_output = getattr(flow_cfg, 'generate_raw_output',
False)
# Main branch image generation.
padding = conv_kernel_size // 2
activation_norm_type = get_and_setattr(gen_cfg, 'activation_norm_type',
'sync_batch')
weight_norm_type = get_and_setattr(gen_cfg, 'weight_norm_type',
'spectral')
activation_norm_params = get_and_setattr(gen_cfg,
'activation_norm_params',
None)
spade_in_channels = [] # Input channel size in SPADE module.
for i in range(num_downsamples + 1):
spade_in_channels += [[num_filters_each_layer[i]]] \
if i >= self.num_multi_spade_layers \
else [[num_filters_each_layer[i]] * 3]
order = getattr(gen_cfg.hyper, 'hyper_block_order', 'NAC')
for i in reversed(range(num_downsamples + 1)):
activation_norm_params.cond_dims = spade_in_channels[i]
is_hyper_conv = self.use_hyper_conv and i < self.num_hyper_layers
is_hyper_norm = self.use_hyper_spade and i < self.num_hyper_layers
setattr(self, 'up_%d' % i, HyperRes2dBlock(
num_filters_each_layer[i + 1], num_filters_each_layer[i],
conv_kernel_size, padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
order=order * 2,
is_hyper_conv=is_hyper_conv, is_hyper_norm=is_hyper_norm))
self.conv_img = Conv2dBlock(num_filters, num_img_channels,
conv_kernel_size, padding=padding,
nonlinearity='leakyrelu', order='AC')
self.upsample = partial(F.interpolate, scale_factor=2)
# Flow estimation module.
# Whether to warp reference image and combine with the synthesized.
self.warp_ref = getattr(flow_cfg, 'warp_ref', True)
if self.warp_ref:
self.flow_network_ref = FlowGenerator(flow_cfg, data_cfg, 2)
self.ref_image_embedding = \
LabelEmbedder(flow_cfg.multi_spade_combine.embed,
num_img_channels + 1)
# At beginning of training, only train an image generator.
self.temporal_initialized = False
if getattr(gen_cfg, 'init_temporal', True):
self.init_temporal_network()
def forward(self, data):
r"""few-shot vid2vid generator forward.
Args:
data (dict) : Dictionary of input data.
Returns:
output (dict) : Dictionary of output data.
"""
label = data['label']
ref_labels, ref_images = data['ref_labels'], data['ref_images']
prev_labels, prev_images = data['prev_labels'], data['prev_images']
is_first_frame = prev_labels is None
if self.is_pose_data:
label, prev_labels = extract_valid_pose_labels(
[label, prev_labels], self.pose_type, self.remove_face_labels)
ref_labels = extract_valid_pose_labels(
ref_labels, self.pose_type, self.remove_face_labels,
do_remove=False)
# Weight generation.
x, encoded_label, conv_weights, norm_weights, atn, atn_vis, ref_idx = \
self.weight_generator(ref_images, ref_labels, label, is_first_frame)
# Flow estimation.
flow, flow_mask, img_warp, cond_inputs = \
self.flow_generation(label, ref_labels, ref_images,
prev_labels, prev_images, ref_idx)
for i in range(len(encoded_label)):
encoded_label[i] = [encoded_label[i]]
if self.generate_raw_output:
encoded_label_raw = [encoded_label[i] for i in
range(self.num_multi_spade_layers)]
x_raw = None
encoded_label = self.SPADE_combine(encoded_label, cond_inputs)
# Main branch image generation.
for i in range(self.num_downsamples, -1, -1):
conv_weight = norm_weight = [None] * 3
if self.use_hyper_conv and i < self.num_hyper_layers:
conv_weight = conv_weights[i]
if self.use_hyper_spade and i < self.num_hyper_layers:
norm_weight = norm_weights[i]
# Main branch residual blocks.
x = self.one_up_conv_layer(x, encoded_label,
conv_weight, norm_weight, i)
# For raw output generation.
if self.generate_raw_output and i < self.num_multi_spade_layers:
x_raw = self.one_up_conv_layer(x_raw, encoded_label_raw,
conv_weight, norm_weight, i)
else:
x_raw = x
# Final conv layer.
if self.generate_raw_output:
img_raw = torch.tanh(self.conv_img(x_raw))
else:
img_raw = None
img_final = torch.tanh(self.conv_img(x))
output = dict()
output['fake_images'] = img_final
output['fake_flow_maps'] = flow
output['fake_occlusion_masks'] = flow_mask
output['fake_raw_images'] = img_raw
output['warped_images'] = img_warp
output['attention_visualization'] = atn_vis
output['ref_idx'] = ref_idx
return output
def one_up_conv_layer(self, x, encoded_label, conv_weight, norm_weight, i):
r"""One residual block layer in the main branch.
Args:
x (4D tensor) : Current feature map.
encoded_label (list of tensors) : Encoded input label maps.
conv_weight (list of tensors) : Hyper conv weights.
norm_weight (list of tensors) : Hyper norm weights.
i (int) : Layer index.
Returns:
x (4D tensor) : Output feature map.
"""
layer = getattr(self, 'up_' + str(i))
x = layer(x, *encoded_label[i], conv_weights=conv_weight,
norm_weights=norm_weight)
if i != 0:
x = self.upsample(x)
return x
def init_temporal_network(self, cfg_init=None):
r"""When starting training multiple frames, initialize the flow network.
Args:
cfg_init (dict) : Weight initialization config.
"""
flow_cfg = self.flow_cfg
emb_cfg = flow_cfg.multi_spade_combine.embed
num_frames_G = self.num_frames_G
self.temporal_initialized = True
self.sep_prev_flownet = flow_cfg.sep_prev_flow or (num_frames_G != 2) \
or not flow_cfg.warp_ref
if self.sep_prev_flownet:
self.flow_network_temp = FlowGenerator(flow_cfg, self.data_cfg,
num_frames_G)
if cfg_init is not None:
self.flow_network_temp.apply(weights_init(cfg_init.type,
cfg_init.gain))
else:
self.flow_network_temp = self.flow_network_ref
self.sep_prev_embedding = emb_cfg.sep_warp_embed or \
not flow_cfg.warp_ref
if self.sep_prev_embedding:
num_img_channels = get_paired_input_image_channel_number(
self.data_cfg)
self.prev_image_embedding = \
LabelEmbedder(emb_cfg, num_img_channels + 1)
if cfg_init is not None:
self.prev_image_embedding.apply(
weights_init(cfg_init.type, cfg_init.gain))
else:
self.prev_image_embedding = self.ref_image_embedding
if self.warp_ref:
if self.sep_prev_flownet:
self.init_network_weights(self.flow_network_ref,
self.flow_network_temp)
print('Initialized temporal flow network with the reference '
'one.')
if self.sep_prev_embedding:
self.init_network_weights(self.ref_image_embedding,
self.prev_image_embedding)
print('Initialized temporal embedding network with the '
'reference one.')
self.flow_temp_is_initalized = True
def init_network_weights(self, net_src, net_dst):
r"""Initialize weights in net_dst with those in net_src."""
source_weights = net_src.state_dict()
target_weights = net_dst.state_dict()
for k, v in source_weights.items():
if k in target_weights and target_weights[k].size() == v.size():
target_weights[k] = v
net_dst.load_state_dict(target_weights)
def load_pretrained_network(self, pretrained_dict, prefix='module.'):
r"""Load the pretrained network into self network.
Args:
pretrained_dict (dict): Pretrained network weights.
prefix (str): Prefix to the network weights name.
"""
# print(pretrained_dict.keys())
model_dict = self.state_dict()
print('Pretrained network has fewer layers; The following are '
'not initialized:')
not_initialized = set()
for k, v in model_dict.items():
kp = prefix + k
if kp in pretrained_dict and v.size() == pretrained_dict[kp].size():
model_dict[k] = pretrained_dict[kp]
else:
not_initialized.add('.'.join(k.split('.')[:2]))
print(sorted(not_initialized))
self.load_state_dict(model_dict)
def reset(self):
r"""Reset the network at the beginning of a sequence."""
self.weight_generator.reset()
def flow_generation(self, label, ref_labels, ref_images, prev_labels,
prev_images, ref_idx):
r"""Generates flows and masks for warping reference / previous images.
Args:
label (NxCxHxW tensor): Target label map.
ref_labels (NxKxCxHxW tensor): Reference label maps.
ref_images (NxKx3xHxW tensor): Reference images.
prev_labels (NxTxCxHxW tensor): Previous label maps.
prev_images (NxTx3xHxW tensor): Previous images.
ref_idx (Nx1 tensor): Index for which image to use from the
reference images.
Returns:
(tuple):
- flow (list of Nx2xHxW tensor): Optical flows.
- occ_mask (list of Nx1xHxW tensor): Occlusion masks.
- img_warp (list of Nx3xHxW tensor): Warped reference / previous
images.
- cond_inputs (list of Nx4xHxW tensor): Conditional inputs for
SPADE combination.
"""
# Pick an image in the reference images using ref_idx.
ref_label, ref_image = pick_image([ref_labels, ref_images], ref_idx)
# Only start using prev frames when enough prev frames are generated.
has_prev = prev_labels is not None and \
prev_labels.shape[1] == (self.num_frames_G - 1)
flow, occ_mask, img_warp, cond_inputs = [None] * 2, [None] * 2, \
[None] * 2, [None] * 2
if self.warp_ref:
# Generate flows/masks for warping the reference image.
flow_ref, occ_mask_ref = \
self.flow_network_ref(label, ref_label, ref_image)
ref_image_warp = resample(ref_image, flow_ref)
flow[0], occ_mask[0], img_warp[0] = \
flow_ref, occ_mask_ref, ref_image_warp[:, :3]
# Concat warped image and occlusion mask to form the conditional
# input.
cond_inputs[0] = torch.cat([img_warp[0], occ_mask[0]], dim=1)
if self.temporal_initialized and has_prev:
# Generate flows/masks for warping the previous image.
b, t, c, h, w = prev_labels.shape
prev_labels_concat = prev_labels.view(b, -1, h, w)
prev_images_concat = prev_images.view(b, -1, h, w)
flow_prev, occ_mask_prev = \
self.flow_network_temp(label, prev_labels_concat,
prev_images_concat)
img_prev_warp = resample(prev_images[:, -1], flow_prev)
flow[1], occ_mask[1], img_warp[1] = \
flow_prev, occ_mask_prev, img_prev_warp
cond_inputs[1] = torch.cat([img_warp[1], occ_mask[1]], dim=1)
return flow, occ_mask, img_warp, cond_inputs
def SPADE_combine(self, encoded_label, cond_inputs):
r"""Using Multi-SPADE to combine raw synthesized image with warped
images.
Args:
encoded_label (list of tensors): Original label map embeddings.
cond_inputs (list of tensors): New SPADE conditional inputs from the
warped images.
Returns:
encoded_label (list of tensors): Combined conditional inputs.
"""
# Generate the conditional embeddings from inputs.
embedded_img_feat = [None, None]
if cond_inputs[0] is not None:
embedded_img_feat[0] = self.ref_image_embedding(cond_inputs[0])
if cond_inputs[1] is not None:
embedded_img_feat[1] = self.prev_image_embedding(cond_inputs[1])
# Combine the original encoded label maps with new conditional
# embeddings.
for i in range(self.num_multi_spade_layers):
encoded_label[i] += [w[i] if w is not None else None
for w in embedded_img_feat]
return encoded_label
def custom_init(self):
r"""This function is for dealing with the numerical issue that might
occur when doing mixed precision training.
"""
print('Use custom initialization for the generator.')
for k, m in self.named_modules():
if 'weight_generator.ref_label_' in k and 'norm' in k:
m.eps = 1e-1
class WeightGenerator(nn.Module):
r"""Weight generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file
"""
def __init__(self, gen_cfg, data_cfg):
super().__init__()
self.data_cfg = data_cfg
self.embed_cfg = embed_cfg = gen_cfg.embed
self.embed_arch = embed_cfg.arch
num_filters = gen_cfg.num_filters
self.max_num_filters = gen_cfg.max_num_filters
self.num_downsamples = num_downsamples = gen_cfg.num_downsamples
self.num_filters_each_layer = num_filters_each_layer = \
[min(self.max_num_filters, num_filters * (2 ** i))
for i in range(num_downsamples + 2)]
if getattr(embed_cfg, 'num_filters', 32) != num_filters:
raise ValueError('Embedding network must have the same number of '
'filters as generator.')
# Normalization params.
hyper_cfg = gen_cfg.hyper
kernel_size = getattr(hyper_cfg, 'kernel_size', 3)
activation_norm_type = getattr(hyper_cfg, 'activation_norm_type',
'sync_batch')
weight_norm_type = getattr(hyper_cfg, 'weight_norm_type', 'spectral')
# Conv kernel size in main branch.
self.conv_kernel_size = conv_kernel_size = gen_cfg.kernel_size
# Conv kernel size in embedding network.
self.embed_kernel_size = embed_kernel_size = \
getattr(gen_cfg.embed, 'kernel_size', 3)
# Conv kernel size in SPADE.
self.kernel_size = kernel_size = \
getattr(gen_cfg.activation_norm_params, 'kernel_size', 1)
# Input channel size in SPADE module.
self.spade_in_channels = []
for i in range(num_downsamples + 1):
self.spade_in_channels += [num_filters_each_layer[i]]
# Hyper normalization / convolution.
# Use adaptive weight generation for SPADE.
self.use_hyper_spade = hyper_cfg.is_hyper_spade
# Use adaptive for the label embedding network.
self.use_hyper_embed = hyper_cfg.is_hyper_embed
# Use adaptive for convolutional layers in the main branch.
self.use_hyper_conv = hyper_cfg.is_hyper_conv
# Number of hyper layers.
self.num_hyper_layers = hyper_cfg.num_hyper_layers
# Order of operations in the conv block.
order = getattr(gen_cfg.hyper, 'hyper_block_order', 'NAC')
self.conv_before_norm = order.find('C') < order.find('N')
# For reference image encoding.
# How to utilize the reference label map: concat | mul.
self.concat_ref_label = 'concat' in hyper_cfg.method_to_use_ref_labels
self.mul_ref_label = 'mul' in hyper_cfg.method_to_use_ref_labels
# Output spatial size for adaptive pooling layer.
self.sh_fix = self.sw_fix = 32
# Number of fc layers in weight generation.
self.num_fc_layers = getattr(hyper_cfg, 'num_fc_layers', 2)
# Reference image encoding network.
num_input_channels = get_paired_input_label_channel_number(data_cfg)
if num_input_channels == 0:
num_input_channels = getattr(data_cfg, 'label_channels', 1)
elif get_nested_attr(data_cfg, 'for_pose_dataset.pose_type',
'both') == 'open':
num_input_channels -= 3
data_cfg.num_input_channels = num_input_channels
num_img_channels = get_paired_input_image_channel_number(data_cfg)
num_ref_channels = num_img_channels + (num_input_channels
if self.concat_ref_label else 0)
conv_2d_block = partial(
Conv2dBlock, kernel_size=kernel_size,
padding=(kernel_size // 2), weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity='leakyrelu')
self.ref_img_first = conv_2d_block(num_ref_channels, num_filters)
if self.mul_ref_label:
self.ref_label_first = conv_2d_block(num_input_channels,
num_filters)
for i in range(num_downsamples):
in_ch, out_ch = num_filters_each_layer[i], \
num_filters_each_layer[i + 1]
setattr(self, 'ref_img_down_%d' % i,
conv_2d_block(in_ch, out_ch, stride=2))
setattr(self, 'ref_img_up_%d' % i, conv_2d_block(out_ch, in_ch))
if self.mul_ref_label:
setattr(self, 'ref_label_down_%d' % i,
conv_2d_block(in_ch, out_ch, stride=2))
setattr(self, 'ref_label_up_%d' % i,
conv_2d_block(out_ch, in_ch))
# Normalization / main branch conv weight generation.
if self.use_hyper_spade or self.use_hyper_conv:
for i in range(self.num_hyper_layers):
ch_in, ch_out = num_filters_each_layer[i], \
num_filters_each_layer[i + 1]
conv_ks2 = conv_kernel_size ** 2
embed_ks2 = embed_kernel_size ** 2
spade_ks2 = kernel_size ** 2
spade_in_ch = self.spade_in_channels[i]
fc_names, fc_ins, fc_outs = [], [], []
if self.use_hyper_spade:
fc0_out = fcs_out = (spade_in_ch * spade_ks2 + 1) * (
1 if self.conv_before_norm else 2)
fc1_out = (spade_in_ch * spade_ks2 + 1) * (
1 if ch_in != ch_out else 2)
fc_names += ['fc_spade_0', 'fc_spade_1', 'fc_spade_s']
fc_ins += [ch_out] * 3
fc_outs += [fc0_out, fc1_out, fcs_out]
if self.use_hyper_embed:
fc_names += ['fc_spade_e']
fc_ins += [ch_out]
fc_outs += [ch_in * embed_ks2 + 1]
if self.use_hyper_conv:
fc0_out = ch_out * conv_ks2 + 1
fc1_out = ch_in * conv_ks2 + 1
fcs_out = ch_out + 1
fc_names += ['fc_conv_0', 'fc_conv_1', 'fc_conv_s']
fc_ins += [ch_in] * 3
fc_outs += [fc0_out, fc1_out, fcs_out]
linear_block = partial(LinearBlock,
weight_norm_type='spectral',
nonlinearity='leakyrelu')
for n, l in enumerate(fc_names):
fc_in = fc_ins[n] if self.mul_ref_label \
else self.sh_fix * self.sw_fix
fc_layer = [linear_block(fc_in, ch_out)]
for k in range(1, self.num_fc_layers):
fc_layer += [linear_block(ch_out, ch_out)]
fc_layer += [LinearBlock(ch_out, fc_outs[n],
weight_norm_type='spectral')]
setattr(self, '%s_%d' % (l, i), nn.Sequential(*fc_layer))
# Label embedding network.
num_hyper_layers = self.num_hyper_layers if self.use_hyper_embed else 0
self.label_embedding = LabelEmbedder(self.embed_cfg,
num_input_channels,
num_hyper_layers=num_hyper_layers)
# For multiple reference images.
if hasattr(hyper_cfg, 'attention'):
self.num_downsample_atn = get_and_setattr(hyper_cfg.attention,
'num_downsamples', 2)
if data_cfg.initial_few_shot_K > 1:
self.attention_module = AttentionModule(hyper_cfg, data_cfg,
conv_2d_block,
num_filters_each_layer)
else:
self.num_downsample_atn = 0
def forward(self, ref_image, ref_label, label, is_first_frame):
r"""Generate network weights based on the reference images.
Args:
ref_image (NxKx3xHxW tensor): Reference images.
ref_label (NxKxCxHxW tensor): Reference labels.
label (NxCxHxW tensor): Target label.
is_first_frame (bool): Whether the current frame is the first frame.
Returns:
(tuple):
- x (NxC2xH2xW2 tensor): Encoded features from reference images
for the main branch (as input to the decoder).
- encoded_label (list of tensors): Encoded target label map for
SPADE.
- conv_weights (list of tensors): Network weights for conv
layers in the main network.
- norm_weights (list of tensors): Network weights for SPADE
layers in the main network.
- attention (Nx(KxH1xW1)x(H1xW1) tensor): Attention maps.
- atn_vis (1x1xH1xW1 tensor): Visualization for attention
scores.
- ref_idx (Nx1 tensor): Index for which image to use from the
reference images.
"""
b, k, c, h, w = ref_image.size()
ref_image = ref_image.view(b * k, -1, h, w)
if ref_label is not None:
ref_label = ref_label.view(b * k, -1, h, w)
# Encode the reference images to get the features.
x, encoded_ref, atn, atn_vis, ref_idx = \
self.encode_reference(ref_image, ref_label, label, k)
# If the reference image has changed, recompute the network weights.
if self.training or is_first_frame or k > 1:
embedding_weights, norm_weights, conv_weights = [], [], []
for i in range(self.num_hyper_layers):
if self.use_hyper_spade:
feat = encoded_ref[min(len(encoded_ref) - 1, i + 1)]
embedding_weight, norm_weight = \
self.get_norm_weights(feat, i)
embedding_weights.append(embedding_weight)
norm_weights.append(norm_weight)
if self.use_hyper_conv:
feat = encoded_ref[min(len(encoded_ref) - 1, i)]
conv_weights.append(self.get_conv_weights(feat, i))
if not self.training:
self.embedding_weights, self.conv_weights, self.norm_weights \
= embedding_weights, conv_weights, norm_weights
else:
# print('Reusing network weights.')
embedding_weights, conv_weights, norm_weights \
= self.embedding_weights, self.conv_weights, self.norm_weights
# Encode the target label to get the encoded features.
encoded_label = self.label_embedding(label, weights=(
embedding_weights if self.use_hyper_embed else None))
return x, encoded_label, conv_weights, norm_weights, \
atn, atn_vis, ref_idx
def encode_reference(self, ref_image, ref_label, label, k):
r"""Encode the reference image to get features for weight generation.
Args:
ref_image ((NxK)x3xHxW tensor): Reference images.
ref_label ((NxK)xCxHxW tensor): Reference labels.
label (NxCxHxW tensor): Target label.
k (int): Number of reference images.
Returns:
(tuple):
- x (NxC2xH2xW2 tensor): Encoded features from reference images
for the main branch (as input to the decoder).
- encoded_ref (list of tensors): Encoded features from reference
images for the weight generation branch.
- attention (Nx(KxH1xW1)x(H1xW1) tensor): Attention maps.
- atn_vis (1x1xH1xW1 tensor): Visualization for attention scores.
- ref_idx (Nx1 tensor): Index for which image to use from the
reference images.
"""
if self.concat_ref_label:
# Concat reference label map and image together for encoding.
concat_ref = torch.cat([ref_image, ref_label], dim=1)
x = self.ref_img_first(concat_ref)
elif self.mul_ref_label:
# Apply conv to both reference label and image, then multiply them
# together for encoding.
x = self.ref_img_first(ref_image)
x_label = self.ref_label_first(ref_label)
else:
x = self.ref_img_first(ref_image)
# Attention map and the index of the most similar reference image.
atn = atn_vis = ref_idx = None
for i in range(self.num_downsamples):
x = getattr(self, 'ref_img_down_' + str(i))(x)
if self.mul_ref_label:
x_label = getattr(self, 'ref_label_down_' + str(i))(x_label)
# Combine different reference images at a particular layer.
if k > 1 and i == self.num_downsample_atn - 1:
x, atn, atn_vis = self.attention_module(x, label, ref_label)
if self.mul_ref_label:
x_label, _, _ = self.attention_module(x_label, None, None,
atn)
atn_sum = atn.view(label.shape[0], k, -1).sum(2)
ref_idx = torch.argmax(atn_sum, dim=1)
# Get all corresponding layers in the encoder output for generating
# weights in corresponding layers.
encoded_image_ref = [x]
if self.mul_ref_label:
encoded_ref_label = [x_label]
for i in reversed(range(self.num_downsamples)):
conv = getattr(self, 'ref_img_up_' + str(i))(
encoded_image_ref[-1])
encoded_image_ref.append(conv)
if self.mul_ref_label:
conv_label = getattr(self, 'ref_label_up_' + str(i))(
encoded_ref_label[-1])
encoded_ref_label.append(conv_label)
if self.mul_ref_label:
encoded_ref = []
for i in range(len(encoded_image_ref)):
conv, conv_label \
= encoded_image_ref[i], encoded_ref_label[i]
b, c, h, w = conv.size()
conv_label = nn.Softmax(dim=1)(conv_label)
conv_prod = (conv.view(b, c, 1, h * w) *
conv_label.view(b, 1, c,
h * w)).sum(3, keepdim=True)
encoded_ref.append(conv_prod)
else:
encoded_ref = encoded_image_ref
encoded_ref = encoded_ref[::-1]
return x, encoded_ref, atn, atn_vis, ref_idx
def get_norm_weights(self, x, i):
r"""Adaptively generate weights for SPADE in layer i of generator.
Args:
x (NxCxHxW tensor): Input features.
i (int): Layer index.
Returns:
(tuple):
- embedding_weights (list of tensors): Weights for the label
embedding network.
- norm_weights (list of tensors): Weights for the SPADE layers.
"""
if not self.mul_ref_label:
# Get fixed output size for fc layers.
x = nn.AdaptiveAvgPool2d((self.sh_fix, self.sw_fix))(x)
in_ch = self.num_filters_each_layer[i]
out_ch = self.num_filters_each_layer[i + 1]
spade_ch = self.spade_in_channels[i]
eks, sks = self.embed_kernel_size, self.kernel_size
b = x.size(0)
weight_reshaper = WeightReshaper()
x = weight_reshaper.reshape_embed_input(x)
# Weights for the label embedding network.
embedding_weights = None
if self.use_hyper_embed:
fc_e = getattr(self, 'fc_spade_e_' + str(i))(x).view(b, -1)
if 'decoder' in self.embed_arch:
weight_shape = [in_ch, out_ch, eks, eks]
fc_e = fc_e[:, :-in_ch]
else:
weight_shape = [out_ch, in_ch, eks, eks]
embedding_weights = weight_reshaper.reshape_weight(fc_e,
weight_shape)
# Weights for the 3 layers in SPADE module: conv_0, conv_1,
# and shortcut.
fc_0 = getattr(self, 'fc_spade_0_' + str(i))(x).view(b, -1)
fc_1 = getattr(self, 'fc_spade_1_' + str(i))(x).view(b, -1)
fc_s = getattr(self, 'fc_spade_s_' + str(i))(x).view(b, -1)
if self.conv_before_norm:
out_ch = in_ch
weight_0 = weight_reshaper.reshape_weight(fc_0, [out_ch * 2, spade_ch,
sks, sks])
weight_1 = weight_reshaper.reshape_weight(fc_1, [in_ch * 2, spade_ch,
sks, sks])
weight_s = weight_reshaper.reshape_weight(fc_s, [out_ch * 2, spade_ch,
sks, sks])
norm_weights = [weight_0, weight_1, weight_s]
return embedding_weights, norm_weights
def get_conv_weights(self, x, i):
r"""Adaptively generate weights for layer i in main branch convolutions.
Args:
x (NxCxHxW tensor): Input features.
i (int): Layer index.
Returns:
(tuple):
- conv_weights (list of tensors): Weights for the conv layers in
the main branch.
"""
if not self.mul_ref_label:
x = nn.AdaptiveAvgPool2d((self.sh_fix, self.sw_fix))(x)
in_ch = self.num_filters_each_layer[i]
out_ch = self.num_filters_each_layer[i + 1]
cks = self.conv_kernel_size
b = x.size()[0]
weight_reshaper = WeightReshaper()
x = weight_reshaper.reshape_embed_input(x)
fc_0 = getattr(self, 'fc_conv_0_' + str(i))(x).view(b, -1)
fc_1 = getattr(self, 'fc_conv_1_' + str(i))(x).view(b, -1)
fc_s = getattr(self, 'fc_conv_s_' + str(i))(x).view(b, -1)
weight_0 = weight_reshaper.reshape_weight(fc_0, [in_ch, out_ch,
cks, cks])
weight_1 = weight_reshaper.reshape_weight(fc_1, [in_ch, in_ch,
cks, cks])
weight_s = weight_reshaper.reshape_weight(fc_s, [in_ch, out_ch, 1, 1])
return [weight_0, weight_1, weight_s]
def reset(self):
r"""Reset the network at the beginning of a sequence."""
self.embedding_weights = self.conv_weights = self.norm_weights = None
class WeightReshaper():
r"""Handles all weight reshape related tasks."""
def reshape_weight(self, x, weight_shape):
r"""Reshape input x to the desired weight shape.
Args:
x (tensor or list of tensors): Input features.
weight_shape (list of int): Desired shape of the weight.
Returns:
(tuple):
- weight (tensor): Network weights
- bias (tensor): Network bias.
"""
# If desired shape is a list, first divide x into the target list of
# features.
if type(weight_shape[0]) == list and type(x) != list:
x = self.split_weights(x, self.sum_mul(weight_shape))
if type(x) == list:
return [self.reshape_weight(xi, wi)
for xi, wi in zip(x, weight_shape)]
# Get output shape, and divide x into either weight + bias or
# just weight.
weight_shape = [x.size(0)] + weight_shape
bias_size = weight_shape[1]
try:
weight = x[:, :-bias_size].view(weight_shape)
bias = x[:, -bias_size:]
except Exception:
weight = x.view(weight_shape)
bias = None
return [weight, bias]
def split_weights(self, weight, sizes):
r"""When the desired shape is a list, first divide the input to each
corresponding weight shape in the list.
Args:
weight (tensor): Input weight.
sizes (int or list of int): Target sizes.
Returns:
weight (list of tensors): Divided weights.
"""
if isinstance(sizes, list):
weights = []
cur_size = 0
for i in range(len(sizes)):
# For each target size in sizes, get the number of elements
# needed.
next_size = cur_size + self.sum(sizes[i])
# Recursively divide the weights.
weights.append(self.split_weights(
weight[:, cur_size:next_size], sizes[i]))
cur_size = next_size
assert (next_size == weight.size(1))
return weights
return weight
def reshape_embed_input(self, x):
r"""Reshape input to be (B x C) X H X W.
Args:
x (tensor or list of tensors): Input features.
Returns:
x (tensor or list of tensors): Reshaped features.
"""
if isinstance(x, list):
return [self.reshape_embed_input(xi) for xi in zip(x)]
b, c, _, _ = x.size()
x = x.view(b * c, -1)
return x
def sum(self, x):
r"""Sum all elements recursively in a nested list.
Args:
x (nested list of int): Input list of elements.
Returns:
out (int): Sum of all elements.
"""
if type(x) != list:
return x
return sum([self.sum(xi) for xi in x])
def sum_mul(self, x):
r"""Given a weight shape, compute the number of elements needed for
weight + bias. If input is a list of shapes, sum all the elements.
Args:
x (list of int): Input list of elements.
Returns:
out (int or list of int): Summed number of elements.
"""
assert (type(x) == list)
if type(x[0]) != list:
return np.prod(x) + x[0] # x[0] accounts for bias.
return [self.sum_mul(xi) for xi in x]
class AttentionModule(nn.Module):
r"""Attention module constructor.
Args:
atn_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file
conv_2d_block: Conv2DBlock constructor.
num_filters_each_layer (int): The number of filters in each layer.
"""
def __init__(self, atn_cfg, data_cfg, conv_2d_block,
num_filters_each_layer):
super().__init__()
self.initial_few_shot_K = data_cfg.initial_few_shot_K
num_input_channels = data_cfg.num_input_channels
num_filters = getattr(atn_cfg, 'num_filters', 32)
self.num_downsample_atn = getattr(atn_cfg, 'num_downsamples', 2)
self.atn_query_first = conv_2d_block(num_input_channels, num_filters)
self.atn_key_first = conv_2d_block(num_input_channels, num_filters)
for i in range(self.num_downsamples_atn):
f_in, f_out = num_filters_each_layer[i], \
num_filters_each_layer[i + 1]
setattr(self, 'atn_key_%d' % i,
conv_2d_block(f_in, f_out, stride=2))
setattr(self, 'atn_query_%d' % i,
conv_2d_block(f_in, f_out, stride=2))
def forward(self, in_features, label, ref_label, attention=None):
r"""Get the attention map to combine multiple image features in the
case of multiple reference images.
Args:
in_features ((NxK)xC1xH1xW1 tensor): Input feaures.
label (NxC2xH2xW2 tensor): Target label.
ref_label (NxC2xH2xW2 tensor): Reference label.
attention (Nx(KxH1xW1)x(H1xW1) tensor): Attention maps.
Returns:
(tuple):
- out_features (NxC1xH1xW1 tensor): Attention-combined features.
- attention (Nx(KxH1xW1)x(H1xW1) tensor): Attention maps.
- atn_vis (1x1xH1xW1 tensor): Visualization for attention scores.
"""
b, c, h, w = in_features.size()
k = self.initial_few_shot_K
b = b // k
if attention is None:
# Compute the attention map by encoding ref_label and label as
# key and query. The map represents how much energy for the k-th
# map at location (h_i, w_j) can contribute to the final map at
# location (h_i2, w_j2).
atn_key = self.attention_encode(ref_label, 'atn_key')
atn_query = self.attention_encode(label, 'atn_query')
atn_key = atn_key.view(b, k, c, -1).permute(
0, 1, 3, 2).contiguous().view(b, -1, c) # B X KHW X C
atn_query = atn_query.view(b, c, -1) # B X C X HW
energy = torch.bmm(atn_key, atn_query) # B X KHW X HW
attention = nn.Softmax(dim=1)(energy)
# Combine the K features from different ref images into one by using
# the attention map.
in_features = in_features.view(b, k, c, h * w).permute(
0, 2, 1, 3).contiguous().view(b, c, -1) # B X C X KHW
out_features = torch.bmm(in_features, attention).view(b, c, h, w)
# Get a slice of the attention map for visualization.
atn_vis = attention.view(b, k, h * w, h * w).sum(2).view(b, k, h, w)
return out_features, attention, atn_vis[-1:, 0:1]
def attention_encode(self, img, net_name):
r"""Encode the input image to get the attention map.
Args:
img (NxCxHxW tensor): Input image.
net_name (str): Name for attention network.
Returns:
x (NxC2xH2xW2 tensor): Encoded feature.
"""
x = getattr(self, net_name + '_first')(img)
for i in range(self.num_downsample_atn):
x = getattr(self, net_name + '_' + str(i))(x)
return x
class FlowGenerator(nn.Module):
r"""flow generator constructor.
Args:
flow_cfg (obj): Flow definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
num_frames (int): Number of input frames.
"""
def __init__(self, flow_cfg, data_cfg, num_frames):
super().__init__()
num_input_channels = data_cfg.num_input_channels
if num_input_channels == 0:
num_input_channels = 1
num_prev_img_channels = get_paired_input_image_channel_number(data_cfg)
num_downsamples = getattr(flow_cfg, 'num_downsamples', 3)
kernel_size = getattr(flow_cfg, 'kernel_size', 3)
padding = kernel_size // 2
num_blocks = getattr(flow_cfg, 'num_blocks', 6)
num_filters = getattr(flow_cfg, 'num_filters', 32)
max_num_filters = getattr(flow_cfg, 'max_num_filters', 1024)
num_filters_each_layer = [min(max_num_filters, num_filters * (2 ** i))
for i in range(num_downsamples + 1)]
self.flow_output_multiplier = getattr(flow_cfg,
'flow_output_multiplier', 20)
self.sep_up_mask = getattr(flow_cfg, 'sep_up_mask', False)
activation_norm_type = getattr(flow_cfg, 'activation_norm_type',
'sync_batch')
weight_norm_type = getattr(flow_cfg, 'weight_norm_type', 'spectral')
base_conv_block = partial(Conv2dBlock, kernel_size=kernel_size,
padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity='leakyrelu')
num_input_channels = num_input_channels * num_frames + \
num_prev_img_channels * (num_frames - 1)
# First layer.
down_flow = [base_conv_block(num_input_channels, num_filters)]
# Downsamples.
for i in range(num_downsamples):
down_flow += [base_conv_block(num_filters_each_layer[i],
num_filters_each_layer[i + 1],
stride=2)]
# Resnet blocks.
res_flow = []
ch = num_filters_each_layer[num_downsamples]
for i in range(num_blocks):
res_flow += [
Res2dBlock(ch, ch, kernel_size, padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
order='NACNAC')]
# Upsamples.
up_flow = []
for i in reversed(range(num_downsamples)):
up_flow += [nn.Upsample(scale_factor=2),
base_conv_block(num_filters_each_layer[i + 1],
num_filters_each_layer[i])]
conv_flow = [Conv2dBlock(num_filters, 2, kernel_size, padding=padding)]
conv_mask = [Conv2dBlock(num_filters, 1, kernel_size, padding=padding,
nonlinearity='sigmoid')]
self.down_flow = nn.Sequential(*down_flow)
self.res_flow = nn.Sequential(*res_flow)
self.up_flow = nn.Sequential(*up_flow)
if self.sep_up_mask:
self.up_mask = nn.Sequential(*copy.deepcopy(up_flow))
self.conv_flow = nn.Sequential(*conv_flow)
self.conv_mask = nn.Sequential(*conv_mask)
def forward(self, label, ref_label, ref_image):
r"""Flow generator forward.
Args:
label (4D tensor) : Input label tensor.
ref_label (4D tensor) : Reference label tensors.
ref_image (4D tensor) : Reference image tensors.
Returns:
(tuple):
- flow (4D tensor) : Generated flow map.
- mask (4D tensor) : Generated occlusion mask.
"""
label_concat = torch.cat([label, ref_label, ref_image], dim=1)
downsample = self.down_flow(label_concat)
res = self.res_flow(downsample)
flow_feat = self.up_flow(res)
flow = self.conv_flow(flow_feat) * self.flow_output_multiplier
mask_feat = self.up_mask(res) if self.sep_up_mask else flow_feat
mask = self.conv_mask(mask_feat)
return flow, mask
class LabelEmbedder(nn.Module):
r"""Embed the input label map to get embedded features.
Args:
emb_cfg (obj): Embed network configuration.
num_input_channels (int): Number of input channels.
num_hyper_layers (int): Number of hyper layers.
"""
def __init__(self, emb_cfg, num_input_channels, num_hyper_layers=0):
super().__init__()
num_filters = getattr(emb_cfg, 'num_filters', 32)
max_num_filters = getattr(emb_cfg, 'max_num_filters', 1024)
self.arch = getattr(emb_cfg, 'arch', 'encoderdecoder')
self.num_downsamples = num_downsamples = \
getattr(emb_cfg, 'num_downsamples', 5)
kernel_size = getattr(emb_cfg, 'kernel_size', 3)
weight_norm_type = getattr(emb_cfg, 'weight_norm_type', 'spectral')
activation_norm_type = getattr(emb_cfg, 'activation_norm_type', 'none')
self.unet = 'unet' in self.arch
self.has_decoder = 'decoder' in self.arch or self.unet
self.num_hyper_layers = num_hyper_layers \
if num_hyper_layers != -1 else num_downsamples
base_conv_block = partial(HyperConv2dBlock, kernel_size=kernel_size,
padding=(kernel_size // 2),
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity='leakyrelu')
ch = [min(max_num_filters, num_filters * (2 ** i))
for i in range(num_downsamples + 1)]
self.conv_first = base_conv_block(num_input_channels, num_filters,
activation_norm_type='none')
# Downsample.
for i in range(num_downsamples):
is_hyper_conv = (i < num_hyper_layers) and not self.has_decoder
setattr(self, 'down_%d' % i,
base_conv_block(ch[i], ch[i + 1], stride=2,
is_hyper_conv=is_hyper_conv))
# Upsample.
if self.has_decoder:
self.upsample = nn.Upsample(scale_factor=2)
for i in reversed(range(num_downsamples)):
ch_i = ch[i + 1] * (
2 if self.unet and i != num_downsamples - 1 else 1)
setattr(self, 'up_%d' % i,
base_conv_block(ch_i, ch[i],
is_hyper_conv=(i < num_hyper_layers)))
def forward(self, input, weights=None):
r"""Embedding network forward.
Args:
input (NxCxHxW tensor): Network input.
weights (list of tensors): Conv weights if using hyper network.
Returns:
output (list of tensors): Network outputs at different layers.
"""
if input is None:
return None
output = [self.conv_first(input)]
for i in range(self.num_downsamples):
layer = getattr(self, 'down_%d' % i)
# For hyper networks, the hyper layers are at the last few layers
# of decoder (if the network has a decoder). Otherwise, the hyper
# layers will be at the first few layers of the network.
if i >= self.num_hyper_layers or self.has_decoder:
conv = layer(output[-1])
else:
conv = layer(output[-1], conv_weights=weights[i])
# We will use outputs from different layers as input to different
# SPADE layers in the main branch.
output.append(conv)
if not self.has_decoder:
return output
# If the network has a decoder, will use outputs from the decoder
# layers instead of the encoding layers.
if not self.unet:
output = [output[-1]]
for i in reversed(range(self.num_downsamples)):
input_i = output[-1]
if self.unet and i != self.num_downsamples - 1:
input_i = torch.cat([input_i, output[i + 1]], dim=1)
input_i = self.upsample(input_i)
layer = getattr(self, 'up_%d' % i)
# The last few layers will be hyper layers if necessary.
if i >= self.num_hyper_layers:
conv = layer(input_i)
else:
conv = layer(input_i, conv_weights=weights[i])
output.append(conv)
if self.unet:
output = output[self.num_downsamples:]
return output[::-1]
|