Spaces:
Runtime error
Runtime error
File size: 19,702 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import numpy as np
import torch
import torch.nn as nn
from torch.nn import Upsample as NearestUpsample
import torch.nn.functional as F
from functools import partial
import sys
sys.path.append(".")
from imaginaire.layers import Conv2dBlock, LinearBlock, Res2dBlock
class StyleMLP(nn.Module):
r"""MLP converting style code to intermediate style representation."""
def __init__(self, style_dim, out_dim, hidden_channels=256, leaky_relu=True, num_layers=5, normalize_input=True,
output_act=True):
super(StyleMLP, self).__init__()
self.normalize_input = normalize_input
self.output_act = output_act
fc_layers = []
fc_layers.append(nn.Linear(style_dim, hidden_channels, bias=True))
for i in range(num_layers-1):
fc_layers.append(nn.Linear(hidden_channels, hidden_channels, bias=True))
self.fc_layers = nn.ModuleList(fc_layers)
self.fc_out = nn.Linear(hidden_channels, out_dim, bias=True)
if leaky_relu:
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
self.act = partial(F.relu, inplace=True)
def forward(self, z):
r""" Forward network
Args:
z (N x style_dim tensor): Style codes.
"""
if self.normalize_input:
z = F.normalize(z, p=2, dim=-1,eps=1e-6)
for fc_layer in self.fc_layers:
z = self.act(fc_layer(z))
z = self.fc_out(z)
if self.output_act:
z = self.act(z)
return z
class histo_process(nn.Module):
r"""Histo process to replace Style Encoder constructor.
Args:
style_enc_cfg (obj): Style encoder definition file.
"""
def __init__(self,style_enc_cfg):
super().__init__()
# if style_enc_cfg.histo.mode in ['RGB','rgb']:
input_channel=270
# else:
# input_channel=90
style_dims = style_enc_cfg.style_dims
self.no_vae = getattr(style_enc_cfg, 'no_vae', False)
num_filters = getattr(style_enc_cfg, 'num_filters', 180)
self.process_model = nn.ModuleList()
self.layer1 = LinearBlock(input_channel,num_filters)
self.layer4 = LinearBlock(num_filters, num_filters)
self.fc_mu = LinearBlock(num_filters, style_dims,nonlinearity='tanh')
if not self.no_vae:
self.fc_var = LinearBlock(num_filters, style_dims,nonlinearity='tanh')
def forward(self,histo):
x = self.layer1(histo)
x = self.layer4(x)
mu = self.fc_mu(x) #[-1,1]
if not self.no_vae:
logvar = self.fc_var(x) # [-1,1]
std = torch.exp(0.5 * logvar) # [0.607,1.624]
eps = torch.randn_like(std)
z = eps.mul(std) + mu
else:
z = mu
logvar = torch.zeros_like(mu)
return mu, logvar, z
class StyleEncoder(nn.Module):
r"""Style Encoder constructor.
Args:
style_enc_cfg (obj): Style encoder definition file.
"""
def __init__(self, style_enc_cfg):
super(StyleEncoder, self).__init__()
input_image_channels = style_enc_cfg.input_image_channels
num_filters = style_enc_cfg.num_filters
kernel_size = style_enc_cfg.kernel_size
padding = int(np.ceil((kernel_size - 1.0) / 2))
style_dims = style_enc_cfg.style_dims
weight_norm_type = style_enc_cfg.weight_norm_type
self.no_vae = getattr(style_enc_cfg, 'no_vae', False)
activation_norm_type = 'none'
nonlinearity = 'leakyrelu'
base_conv2d_block = \
partial(Conv2dBlock,
kernel_size=kernel_size,
stride=2,
padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
# inplace_nonlinearity=True,
nonlinearity=nonlinearity)
self.layer1 = base_conv2d_block(input_image_channels, num_filters)
self.layer2 = base_conv2d_block(num_filters * 1, num_filters * 2)
self.layer3 = base_conv2d_block(num_filters * 2, num_filters * 4)
self.layer4 = base_conv2d_block(num_filters * 4, num_filters * 8)
self.layer5 = base_conv2d_block(num_filters * 8, num_filters * 8)
self.layer6 = base_conv2d_block(num_filters * 8, num_filters * 8)
self.fc_mu = LinearBlock(num_filters * 8 * 4 * 4, style_dims,nonlinearity='tanh')
if not self.no_vae:
self.fc_var = LinearBlock(num_filters * 8 * 4 * 4, style_dims,nonlinearity='tanh')
def forward(self, input_x):
r"""SPADE Style Encoder forward.
Args:
input_x (N x 3 x H x W tensor): input images.
Returns:
mu (N x C tensor): Mean vectors.
logvar (N x C tensor): Log-variance vectors.
z (N x C tensor): Style code vectors.
"""
if input_x.size(2) != 256 or input_x.size(3) != 256:
input_x = F.interpolate(input_x, size=(256, 256), mode='bilinear')
x = self.layer1(input_x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = x.view(x.size(0), -1)
mu = self.fc_mu(x)
if not self.no_vae:
logvar = self.fc_var(x)
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = eps.mul(std) + mu
else:
z = mu
logvar = torch.zeros_like(mu)
return mu, logvar, z
class RenderCNN(nn.Module):
r"""CNN converting intermediate feature map to final image."""
def __init__(self, in_channels, style_dim, hidden_channels=256,
leaky_relu=True):
super(RenderCNN, self).__init__()
self.fc_z_cond = nn.Linear(style_dim, 2 * 2 * hidden_channels)
self.conv1 = nn.Conv2d(in_channels, hidden_channels, 1, stride=1, padding=0)
self.conv2a = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1)
self.conv2b = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1, bias=False)
self.conv3a = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1)
self.conv3b = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1, bias=False)
self.conv4a = nn.Conv2d(hidden_channels, hidden_channels, 1, stride=1, padding=0)
self.conv4b = nn.Conv2d(hidden_channels, hidden_channels, 1, stride=1, padding=0)
self.conv4 = nn.Conv2d(hidden_channels, 3, 1, stride=1, padding=0)
if leaky_relu:
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
self.act = partial(F.relu, inplace=True)
def modulate(self, x, w_, b_):
w_ = w_[..., None, None]
b_ = b_[..., None, None]
return x * (w_+1) + b_ +1e-9
def forward(self, x, z):
r"""Forward network.
Args:
x (N x in_channels x H x W tensor): Intermediate feature map
z (N x style_dim tensor): Style codes.
"""
z = self.fc_z_cond(z)
adapt = torch.chunk(z, 2 * 2, dim=-1)
y = self.act(self.conv1(x))
y = y + self.conv2b(self.act(self.conv2a(y)))
y = self.act(self.modulate(y, adapt[0], adapt[1]))
y = y + self.conv3b(self.act(self.conv3a(y)))
y = self.act(self.modulate(y, adapt[2], adapt[3]))
y = y + self.conv4b(self.act(self.conv4a(y)))
y = self.act(y)
y = self.conv4(y)
y = torch.sigmoid(y)
return y
class inner_Generator(nn.Module):
r"""Pix2pixHD coarse-to-fine generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
last_act: ``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``,default is 'relu'.
"""
def __init__(self, gen_cfg,inner_cfg, data_cfg,num_input_channels=3,last_act='relu'):
super().__init__()
assert last_act in ['none', 'relu', 'leakyrelu', 'prelu',
'tanh' , 'sigmoid' , 'softmax']
# pix2pixHD has a global generator.
global_gen_cfg = inner_cfg
# By default, pix2pixHD using instance normalization.
activation_norm_type = getattr(gen_cfg, 'activation_norm_type',
'instance')
activation_norm_params = getattr(gen_cfg, 'activation_norm_params',
None)
weight_norm_type = getattr(gen_cfg, 'weight_norm_type', '')
padding_mode = getattr(gen_cfg, 'padding_mode', 'reflect')
base_conv_block = partial(Conv2dBlock,
padding_mode=padding_mode,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
nonlinearity='relu')
base_res_block = partial(Res2dBlock,
padding_mode=padding_mode,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
nonlinearity='relu', order='CNACN')
# Know what is the number of available segmentation labels.
# Global generator model.
global_model = GlobalGenerator(global_gen_cfg, data_cfg,
num_input_channels, padding_mode,
base_conv_block, base_res_block,last_act=last_act)
self.global_model = global_model
def forward(self, input, random_style=False):
r"""Coarse-to-fine generator forward.
Args:
data (dict) : Dictionary of input data.
random_style (bool): Always set to false for the pix2pixHD model.
Returns:
output (dict) : Dictionary of output data.
"""
return self.global_model(input)
def load_pretrained_network(self, pretrained_dict):
r"""Load a pretrained network."""
# print(pretrained_dict.keys())
model_dict = self.state_dict()
print('Pretrained network has fewer layers; The following are '
'not initialized:')
not_initialized = set()
for k, v in model_dict.items():
kp = 'module.' + k.replace('global_model.', 'global_model.model.')
if kp in pretrained_dict and v.size() == pretrained_dict[kp].size():
model_dict[k] = pretrained_dict[kp]
else:
not_initialized.add('.'.join(k.split('.')[:2]))
print(sorted(not_initialized))
self.load_state_dict(model_dict)
def inference(self, data, **kwargs):
r"""Generator inference.
Args:
data (dict) : Dictionary of input data.
Returns:
fake_images (tensor): Output fake images.
file_names (str): Data file name.
"""
output = self.forward(data, **kwargs)
return output['fake_images'], data['key']['seg_maps'][0]
class GlobalGenerator(nn.Module):
r"""Coarse generator constructor. This is the main generator in the
pix2pixHD architecture.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
num_input_channels (int): Number of segmentation labels.
padding_mode (str): zero | reflect | ...
base_conv_block (obj): Conv block with preset attributes.
base_res_block (obj): Residual block with preset attributes.
last_act (str, optional, default='relu'):
Type of nonlinear activation function.
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
"""
def __init__(self, gen_cfg, data_cfg, num_input_channels, padding_mode,
base_conv_block, base_res_block,last_act='relu'):
super(GlobalGenerator, self).__init__()
# num_img_channels = get_paired_input_image_channel_number(data_cfg)
num_out_put_channels = getattr(gen_cfg, 'output_nc', 64)
num_filters = getattr(gen_cfg, 'num_filters', 64)
num_downsamples = getattr(gen_cfg, 'num_downsamples', 4)
num_res_blocks = getattr(gen_cfg, 'num_res_blocks', 9)
# First layer.
model = [base_conv_block(num_input_channels, num_filters,
kernel_size=7, padding=3)]
# Downsample.
for i in range(num_downsamples):
ch = num_filters * (2 ** i)
model += [base_conv_block(ch, ch * 2, 3, padding=1, stride=2)]
# ResNet blocks.
ch = num_filters * (2 ** num_downsamples)
for i in range(num_res_blocks):
model += [base_res_block(ch, ch, 3, padding=1)]
# Upsample.
num_upsamples = num_downsamples
for i in reversed(range(num_upsamples)):
ch = num_filters * (2 ** i)
model += \
[NearestUpsample(scale_factor=2),
base_conv_block(ch * 2, ch, 3, padding=1)]
model += [Conv2dBlock(num_filters, num_out_put_channels, 7, padding=3,
padding_mode=padding_mode, nonlinearity=last_act)]
self.model = nn.Sequential(*model)
def forward(self, input):
r"""Coarse-to-fine generator forward.
Args:
input (4D tensor) : Input semantic representations.
Returns:
output (4D tensor) : Synthesized image by generator.
"""
return self.model(input)
class inner_Generator_split(nn.Module):
r"""Pix2pixHD coarse-to-fine generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
last_act: ``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``,default is 'relu'.
"""
def __init__(self, gen_cfg,inner_cfg, data_cfg,num_input_channels=3,last_act='relu'):
super().__init__()
assert last_act in ['none', 'relu', 'leakyrelu', 'prelu',
'tanh' , 'sigmoid' , 'softmax']
# pix2pixHD has a global generator.
# By default, pix2pixHD using instance normalization.
print(inner_cfg)
style_dim = gen_cfg.style_enc_cfg.interm_style_dims
activation_norm_type = getattr(gen_cfg, 'activation_norm_type',
'instance')
activation_norm_params = getattr(gen_cfg, 'activation_norm_params',
None)
weight_norm_type = getattr(gen_cfg, 'weight_norm_type', '')
padding_mode = getattr(gen_cfg, 'padding_mode', 'reflect')
# num_input_channels = get_paired_input_label_channel_number(data_cfg)
# num_input_channels = 3
base_conv_block = partial(Conv2dBlock,
padding_mode=padding_mode,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
)
base_res_block = partial(Res2dBlock,
padding_mode=padding_mode,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
nonlinearity='relu', order='CNACN')
# Know what is the number of available segmentation labels.
# Global generator model.
num_out_put_channels = getattr(inner_cfg, 'output_nc', 64)
num_filters = getattr(inner_cfg, 'num_filters', 64)
num_downsamples = 4
num_res_blocks = getattr(inner_cfg, 'num_res_blocks', 9)
# First layer.
model = [base_conv_block(num_input_channels, num_filters,
kernel_size=7, padding=3)]
model += [nn.PReLU()]
# Downsample.
for i in range(num_downsamples):
ch = num_filters * (2 ** i)
model += [base_conv_block(ch, ch * 2, 3, padding=1, stride=2)]
model += [nn.PReLU()]
# ResNet blocks.
ch = num_filters * (2 ** num_downsamples)
for i in range(num_res_blocks):
model += [base_res_block(ch, ch, 3, padding=1)]
self.model = nn.Sequential(*model)
# Upsample.
assert num_downsamples == 4
if not (inner_cfg.name =='render' and gen_cfg.style_inject):
list = [16,8,4,2]
else:
list = [16,6,6,6]
self.up0_a = NearestUpsample(scale_factor=2)
self.up0_b = base_conv_block(num_filters * list[0], num_filters*list[1], 3, padding=1)
self.up1_a = NearestUpsample(scale_factor=2)
self.up1_b = base_conv_block(num_filters * list[1], num_filters*list[2], 3, padding=1)
self.up2_a = NearestUpsample(scale_factor=2)
self.up2_b = base_conv_block(num_filters * list[2], num_filters*list[3], 3, padding=1)
self.up3_a = NearestUpsample(scale_factor=2)
self.up3_b = base_conv_block(num_filters * list[3], num_filters, 3, padding=1)
self.up_end = Conv2dBlock(num_filters, num_out_put_channels, 7, padding=3,
padding_mode=padding_mode, nonlinearity=last_act)
if inner_cfg.name =='render' and gen_cfg.style_inject:
self.fc_z_cond = nn.Linear(style_dim, 4* list[-1] * num_filters)
def modulate(self, x, w, b):
w = w[..., None, None]
b = b[..., None, None]
return x * (w+1) + b
def forward(self, input,z=None):
r"""Coarse-to-fine generator forward.
Args:
input (4D tensor) : Input semantic representations.
Returns:
output (4D tensor) : Synthesized image by generator.
"""
if z is not None:
z = self.fc_z_cond(z)
adapt = torch.chunk(z, 2 * 2, dim=-1)
input = self.model(input)
input = self.up0_a(input)
input = self.up0_b(input)
input = F.leaky_relu(input,negative_slope=0.2, inplace=True)
input = self.up1_a(input)
input = self.up1_b(input)
if z is not None:
input = self.modulate(input, adapt[0], adapt[1])
input = F.leaky_relu(input,negative_slope=0.2, inplace=True)
input = self.up2_a(input)
input = self.up2_b(input)
if z is not None:
input = self.modulate(input, adapt[2], adapt[3])
input = F.leaky_relu(input,negative_slope=0.2, inplace=True)
input = self.up3_a(input)
input = self.up3_b(input)
input = F.leaky_relu(input,negative_slope=0.2, inplace=True)
input = self.up_end(input)
return input
if __name__=='__main__':
from easydict import EasyDict as edict
style_enc_cfg = edict()
style_enc_cfg.histo.mode = 'RGB'
style_enc_cfg.histo.num_filters = 180
model = histo_process(style_enc_cfg) |