File size: 4,606 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
# https://github.com/switchablenorms/CelebAMask-HQ/tree/master/face_parsing
import torch
from torch import nn
from torch.nn import functional as F


class Unet(nn.Module):
    def __init__(
            self,
            feature_scale=4,
            n_classes=19,
            is_deconv=True,
            in_channels=3,
            is_batchnorm=True,
            image_size=512,
            use_dont_care=False
    ):
        super(Unet, self).__init__()
        self.is_deconv = is_deconv
        self.in_channels = in_channels
        self.is_batchnorm = is_batchnorm
        self.feature_scale = feature_scale
        self.image_size = image_size
        self.n_classes = n_classes
        self.use_dont_care = use_dont_care

        filters = [64, 128, 256, 512, 1024]
        filters = [int(x / self.feature_scale) for x in filters]

        # downsampling
        self.conv1 = unetConv2(self.in_channels, filters[0], self.is_batchnorm)
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)

        self.conv2 = unetConv2(filters[0], filters[1], self.is_batchnorm)
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)

        self.conv3 = unetConv2(filters[1], filters[2], self.is_batchnorm)
        self.maxpool3 = nn.MaxPool2d(kernel_size=2)

        self.conv4 = unetConv2(filters[2], filters[3], self.is_batchnorm)
        self.maxpool4 = nn.MaxPool2d(kernel_size=2)

        self.center = unetConv2(filters[3], filters[4], self.is_batchnorm)

        # upsampling
        self.up_concat4 = unetUp(
            filters[4], filters[3], self.is_deconv, self.is_batchnorm)
        self.up_concat3 = unetUp(
            filters[3], filters[2], self.is_deconv, self.is_batchnorm)
        self.up_concat2 = unetUp(
            filters[2], filters[1], self.is_deconv, self.is_batchnorm)
        self.up_concat1 = unetUp(
            filters[1], filters[0], self.is_deconv, self.is_batchnorm)

        # final conv (without any concat)
        self.final = nn.Conv2d(filters[0], n_classes, 1)

    def forward(self, images, align_corners=True):
        images = F.interpolate(
            images, size=(self.image_size, self.image_size), mode='bicubic',
            align_corners=align_corners
        )

        conv1 = self.conv1(images)
        maxpool1 = self.maxpool1(conv1)
        conv2 = self.conv2(maxpool1)
        maxpool2 = self.maxpool2(conv2)
        conv3 = self.conv3(maxpool2)
        maxpool3 = self.maxpool3(conv3)
        conv4 = self.conv4(maxpool3)
        maxpool4 = self.maxpool4(conv4)
        center = self.center(maxpool4)
        up4 = self.up_concat4(conv4, center)
        up3 = self.up_concat3(conv3, up4)
        up2 = self.up_concat2(conv2, up3)
        up1 = self.up_concat1(conv1, up2)
        probs = self.final(up1)
        pred = torch.argmax(probs, dim=1)
        return pred


class unetConv2(nn.Module):
    def __init__(self, in_size, out_size, is_batchnorm):
        super(unetConv2, self).__init__()

        if is_batchnorm:
            self.conv1 = nn.Sequential(
                nn.Conv2d(in_size, out_size, 3, 1, 1),
                nn.BatchNorm2d(out_size),
                nn.ReLU(),
            )
            self.conv2 = nn.Sequential(
                nn.Conv2d(out_size, out_size, 3, 1, 1),
                nn.BatchNorm2d(out_size),
                nn.ReLU(),
            )
        else:
            self.conv1 = nn.Sequential(nn.Conv2d(in_size, out_size, 3, 1, 1),
                                       nn.ReLU())
            self.conv2 = nn.Sequential(
                nn.Conv2d(out_size, out_size, 3, 1, 1), nn.ReLU()
            )

    def forward(self, inputs):
        outputs = self.conv1(inputs)
        outputs = self.conv2(outputs)
        return outputs


class unetUp(nn.Module):
    def __init__(self, in_size, out_size, is_deconv, is_batchnorm):
        super(unetUp, self).__init__()
        self.conv = unetConv2(in_size, out_size, is_batchnorm)
        if is_deconv:
            self.up = nn.ConvTranspose2d(
                in_size, out_size, kernel_size=2, stride=2)
        else:
            self.up = nn.UpsamplingBilinear2d(scale_factor=2)

    def forward(self, inputs1, inputs2):
        outputs2 = self.up(inputs2)
        offset = outputs2.size()[2] - inputs1.size()[2]
        padding = 2 * [offset // 2, offset // 2]
        outputs1 = F.pad(inputs1, padding)

        return self.conv(torch.cat([outputs1, outputs2], 1))