Spaces:
Runtime error
Runtime error
File size: 13,211 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
# flake8: noqa
from scipy.sparse import lil_matrix, diags, eye
import math
import numpy as np
import torch
EPSILON = 1e-6
NORMALIZATION = 1e6
def _get_msid(x, y, ts=np.logspace(-1, 1, 256), k=5, m=10, niters=100,
rademacher=False, graph_builder='full',
msid_mode='max', normalized_laplacian=True, normalize='empty'):
"""
Compute the msid score between two samples, x and y
Arguments:
x: x samples
y: y samples
ts: temperature values
k: number of neighbours for graph construction
m: Lanczos steps in SLQ
niters: number of starting random vectors for SLQ
rademacher: if True, sample random vectors from Rademacher
distributions, else sample standard normal distribution
graph_builder: if 'kgraph', uses faster graph construction (options:
'sparse', 'kgraph')
msid_mode: 'l2' to compute the l2 norm of the distance between `msid1`
and `msid2`; 'max' to find the maximum abosulute difference between
two descriptors over temperature
normalized_laplacian: if True, use normalized Laplacian
normalize: 'empty' for average heat kernel (corresponds to the empty
graph normalization of NetLSD), 'complete' for the complete, 'er'
for erdos-renyi normalization, 'none' for no normalization
Returns:
msid_score: the scalar value of the distance between discriptors
"""
normed_msidx = msid_descriptor(x, ts, k, m, niters, rademacher,
graph_builder, normalized_laplacian,
normalize)
normed_msidy = msid_descriptor(y, ts, k, m, niters, rademacher,
graph_builder, normalized_laplacian,
normalize)
c = np.exp(-2 * (ts + 1 / ts))
if msid_mode == 'l2':
score = np.linalg.norm(normed_msidx - normed_msidy)
elif msid_mode == 'max':
score = np.amax(c * np.abs(normed_msidx - normed_msidy))
else:
raise Exception('Use either l2 or max mode.')
return {'IMD': score}
def msid_descriptor(x, ts=np.logspace(-1, 1, 256), k=5, m=10, niters=100,
rademacher=False, graph_builder='full',
normalized_laplacian=True, normalize='empty'):
"""
Compute the msid descriptor for a single sample x
Arguments:
x: x samples
ts: temperature values
k: number of neighbours for graph construction
m: Lanczos steps in SLQ
niters: number of starting random vectors for SLQ
rademacher: if True, sample random vectors from Rademacher
distributions, else sample standard normal distribution
graph_builder: if 'kgraph', uses faster graph construction
(options: '
rse', 'kgraph')
normalized_laplacian: if True, use normalized Laplacian
normalize: 'empty' for average heat kernel (corresponds to the empty
graph normalization of NetLSD), 'complete' for the complete, 'er'
for erdos-renyi normalization, 'none' for no normalization
Returns:
normed_msidx: normalized msid descriptor
"""
Lx = _build_graph(x, k, graph_builder, normalized_laplacian)
nx = Lx.shape[0]
msidx = slq_red_var(Lx, m, niters, ts, rademacher)
normed_msidx = _normalize_msid(msidx, normalize, nx, k, ts) * NORMALIZATION
return normed_msidx
def _build_graph(data, k=5, graph_builder='full', normalized=True):
"""
Return Laplacian from data or load preconstructed from path
Arguments:
data: samples
k: number of neighbours for graph construction
graph_builder: if 'kgraph', use faster graph construction
normalized: if True, use nnormalized Laplacian
Returns:
L: Laplacian of the graph constructed with data
"""
if graph_builder == 'sparse':
A = construct_graph_sparse(data.cpu().numpy(), k)
elif graph_builder == 'kgraph':
A = construct_graph_kgraph(data.cpu().numpy(), k)
elif graph_builder == 'full':
A = lil_matrix(construct_graph(data, k).cpu().numpy()).tocsr()
else:
raise Exception('Please specify graph builder: sparse or kgraph.')
A = (A + A.T) / 2
A.data = np.ones(A.data.shape)
L = _laplacian_sparse(A, normalized)
return L
def _normalize_msid(msid, normalization, n, k, ts):
normed_msid = msid.copy()
if normalization == 'empty':
normed_msid /= n
elif normalization == 'complete':
normed_msid /= (1 + (n - 1) * np.exp(-(1 + 1 / (n - 1)) * ts))
elif normalization == 'er':
xs = np.linspace(0, 1, n)
er_spectrum = 4 / np.sqrt(k) * xs + 1 - 2 / np.sqrt(k)
er_msid = np.exp(-np.outer(ts, er_spectrum)).sum(-1)
normed_msid = normed_msid / (er_msid + EPSILON)
elif normalization == 'none' or normalization is None:
pass
else:
raise ValueError('Unknown normalization parameter!')
return normed_msid
def _lanczos_m(A, m, nv, rademacher, SV=None):
"""
Lanczos algorithm computes symmetric m x m tridiagonal matrix T and
matrix V with orthogonal rows constituting the basis of the Krylov
subspace K_m(A, x), where x is an arbitrary starting unit vector. This
implementation parallelizes `nv` starting vectors.
Arguments:
m: number of Lanczos steps
nv: number of random vectors
rademacher: True to use Rademacher distribution,
False - standard normal for random vectors
SV: specified starting vectors
Returns: T: a nv x m x m tensor, T[i, :, :] is the ith symmetric
tridiagonal matrix V: a n x m x nv tensor, V[:, :, i] is the ith matrix
with orthogonal rows
"""
orthtol = 1e-5
if type(SV) != np.ndarray:
if rademacher:
SV = np.sign(np.random.randn(A.shape[0], nv))
else:
SV = np.random.randn(A.shape[0],
nv) # init random vectors in columns: n x nv
V = np.zeros((SV.shape[0], m, nv))
T = np.zeros((nv, m, m))
np.divide(SV, np.linalg.norm(SV, axis=0), out=SV) # normalize each column
V[:, 0, :] = SV
w = A.dot(SV)
alpha = np.einsum('ij,ij->j', w, SV)
w -= alpha[None, :] * SV
beta = np.einsum('ij,ij->j', w, w)
np.sqrt(beta, beta)
T[:, 0, 0] = alpha
T[:, 0, 1] = beta
T[:, 1, 0] = beta
np.divide(w, beta[None, :], out=w)
V[:, 1, :] = w
t = np.zeros((m, nv))
for i in range(1, m):
SVold = V[:, i - 1, :]
SV = V[:, i, :]
w = A.dot(SV) # sparse @ dense
w -= beta[None, :] * SVold # n x nv
np.einsum('ij,ij->j', w, SV, out=alpha)
T[:, i, i] = alpha
if i < m - 1:
w -= alpha[None, :] * SV # n x nv
# reortho
np.einsum('ijk,ik->jk', V, w, out=t)
w -= np.einsum('ijk,jk->ik', V, t)
np.einsum('ij,ij->j', w, w, out=beta)
np.sqrt(beta, beta)
np.divide(w, beta[None, :], out=w)
T[:, i, i + 1] = beta
T[:, i + 1, i] = beta
# more reotho
innerprod = np.einsum('ijk,ik->jk', V, w)
reortho = False
for _ in range(100):
if not (innerprod > orthtol).sum():
reortho = True
break
np.einsum('ijk,ik->jk', V, w, out=t)
w -= np.einsum('ijk,jk->ik', V, t)
np.divide(w, np.linalg.norm(w, axis=0)[None, :], out=w)
innerprod = np.einsum('ijk,ik->jk', V, w)
V[:, i + 1, :] = w
if (np.abs(beta) > 1e-6).sum() == 0 or not reortho:
break
return T, V
def _slq(A, m, niters, rademacher):
"""
Compute the trace of matrix exponential
Arguments:
A: square matrix in trace(exp(A))
m: number of Lanczos steps
niters: number of quadratures (also, the number of random vectors in the
hutchinson trace estimator)
rademacher: True to use Rademacher distribution, False - standard normal
for random vectors in Hutchinson
Returns: trace: estimate of trace of matrix exponential
"""
T, _ = _lanczos_m(A, m, niters, rademacher)
eigvals, eigvecs = np.linalg.eigh(T)
expeig = np.exp(eigvals)
sqeigv1 = np.power(eigvecs[:, 0, :], 2)
trace = A.shape[-1] * (expeig * sqeigv1).sum() / niters
return trace
def _slq_ts(A, m, niters, ts, rademacher):
"""
Compute the trace of matrix exponential
Arguments:
A: square matrix in trace(exp(-t*A)), where t is temperature
m: number of Lanczos steps
niters: number of quadratures (also, the number of random vectors in the
hutchinson trace estimator)
ts: an array with temperatures
rademacher: True to use Rademacher distribution, False - standard normal
for random vectors in Hutchinson
Returns:
trace: estimate of trace of matrix exponential across temperatures `ts`
"""
T, _ = _lanczos_m(A, m, niters, rademacher)
eigvals, eigvecs = np.linalg.eigh(T)
expeig = np.exp(-np.outer(ts, eigvals)).reshape(ts.shape[0], niters, m)
sqeigv1 = np.power(eigvecs[:, 0, :], 2)
traces = A.shape[-1] * (expeig * sqeigv1).sum(-1).mean(-1)
return traces
def _slq_ts_fs(A, m, niters, ts, rademacher, fs):
"""
Compute the trace of matrix functions
Arguments:
A: square matrix in trace(exp(-t*A)), where t is temperature
m: number of Lanczos steps
niters: number of quadratures (also, the number of random vectors in the
hutchinson trace estimator)
ts: an array with temperatures
rademacher: True to use Rademacher distribution, else - standard normal
for random vectors in Hutchinson
fs: a list of functions
Returns:
traces: estimate of traces for each of the functions in fs
"""
T, _ = _lanczos_m(A, m, niters, rademacher)
eigvals, eigvecs = np.linalg.eigh(T)
traces = np.zeros((len(fs), len(ts)))
for i, f in enumerate(fs):
expeig = f(-np.outer(ts, eigvals)).reshape(ts.shape[0], niters, m)
sqeigv1 = np.power(eigvecs[:, 0, :], 2)
traces[i, :] = A.shape[-1] * (expeig * sqeigv1).sum(-1).mean(-1)
return traces
def slq_red_var(A, m, niters, ts, rademacher):
"""
Compute the trace of matrix exponential with reduced variance
Arguments:
A: square matrix in trace(exp(-t*A)), where t is temperature
m: number of Lanczos steps
niters: number of quadratures (also, the number of random vectors in the
hutchinson trace estimator)
ts: an array with temperatures
Returns:
traces: estimate of trace for each temperature value in `ts`
"""
fs = [np.exp, lambda x: x]
traces = _slq_ts_fs(A, m, niters, ts, rademacher, fs)
subee = traces[0, :] - traces[1, :] / np.exp(ts)
sub = - ts * A.shape[0] / np.exp(ts)
return subee + sub
def np_euc_cdist(data):
dd = np.sum(data * data, axis=1)
dist = -2 * np.dot(data, data.T)
dist += dd + dd[:, np.newaxis]
np.fill_diagonal(dist, 0)
np.sqrt(dist, dist)
return dist
def construct_graph_sparse(data, k):
n = len(data)
spmat = lil_matrix((n, n))
dd = np.sum(data * data, axis=1)
for i in range(n):
dists = dd - 2 * data[i, :].dot(data.T)
inds = np.argpartition(dists, k + 1)[:k + 1]
inds = inds[inds != i]
spmat[i, inds] = 1
return spmat.tocsr()
def construct_graph_kgraph(data, k):
raise NotImplementedError
#
# n = len(data)
# spmat = lil_matrix((n, n))
# index = pykgraph.KGraph(data, 'euclidean')
# index.build(reverse=0, K=2 * k + 1, L=2 * k + 50)
# result = index.search(data, K=k + 1)[:, 1:]
# spmat[np.repeat(np.arange(n), k, 0), result.ravel()] = 1
# return spmat.tocsr()
def construct_graph(input_features, k, num_splits=10):
num_samples = input_features.shape[0]
indices = []
for i in range(num_splits):
batch_size = math.ceil(num_samples / num_splits)
start_idx = i * batch_size
end_idx = min((i + 1) * batch_size, num_samples)
dist = torch.cdist(input_features[start_idx:end_idx],
input_features)
indices.append(torch.topk(dist, k + 1, dim=-1, largest=False)[1].cpu())
indices = torch.cat(indices, dim=0)
graph = torch.zeros(num_samples, num_samples, device=indices.device)
graph.scatter_(1, indices, 1)
graph -= torch.eye(num_samples, device=graph.device)
return graph
def _laplacian_sparse(A, normalized=True):
D = A.sum(1).A1
if normalized:
Dsqrt = diags(1 / np.sqrt(D))
L = eye(A.shape[0]) - Dsqrt.dot(A).dot(Dsqrt)
else:
L = diags(D) - A
return L
|