Spaces:
Runtime error
Runtime error
File size: 12,554 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
"""
Modified from https://github.com/abdulfatir/gan-metrics-pytorch
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import warnings
import numpy as np
import torch
from imaginaire.evaluation.common import get_activations, \
load_or_compute_activations
from imaginaire.utils.distributed import is_master
from imaginaire.utils.distributed import master_only_print as print
@torch.no_grad()
def compute_kid(kid_path, data_loader, net_G,
key_real='images', key_fake='fake_images',
real_act=None, fake_act=None,
sample_size=None, preprocess=None, is_video=False,
save_act=True, num_subsets=1, subset_size=None, **kwargs):
r"""Compute the kid score.
Args:
kid_path (str): Location for store feature activations.
data_loader (obj): PyTorch dataloader object.
net_G (obj): For image generation modes, net_G is the PyTorch trainer
network. For video generation models, net_G is the trainer
because video generation requires more complicated processing.
key_real (str): Dictionary key value for the real data.
key_fake (str): Dictionary key value for the fake data.
real_act (torch.Tensor or None): Feature activations of real data.
fake_act (torch.Tensor or None): Feature activations of fake data.
sample_size (int): How many samples to be used for computing feature
activations.
preprocess (func): The preprocess function to be applied to the data.
is_video (bool): Whether we are handling video sequences.
save_act (bool): If ``True``, saves real activations to the disk and
reload them in the future. It might save some computation but will
cost storage.
num_subsets (int): Number of subsets to sample from all the samples.
subset_size (int): Number of samples in each subset.
Returns:
kid (float): KID value.
"""
print('Computing KID.')
act_path = os.path.join(
os.path.dirname(kid_path), 'activations_real.npy'
) if save_act else None
# Get the fake activations.
if fake_act is None:
fake_act = load_or_compute_activations(None,
data_loader,
key_real, key_fake, net_G,
sample_size, preprocess,
is_video=is_video, **kwargs)
else:
print(f"Using precomputed activations of size {fake_act.shape}.")
# Get the ground truth activations.
if real_act is None:
real_act = load_or_compute_activations(act_path,
data_loader,
key_real, key_fake, None,
sample_size, preprocess,
is_video=is_video, **kwargs)
else:
print(f"Using precomputed activations of size {real_act.shape}.")
if is_master():
return _polynomial_mmd_averages(fake_act, real_act,
num_subsets,
subset_size,
ret_var=True)["KID"]
@torch.no_grad()
def compute_kid_data(kid_path, data_loader_a, data_loader_b,
key_a='images', key_b='images', sample_size=None,
is_video=False, num_subsets=1, subset_size=None,
**kwargs):
r"""Compute the kid score between two datasets.
Args:
kid_path (str): Location for store feature activations.
data_loader_a (obj): PyTorch dataloader object for dataset a.
data_loader_b (obj): PyTorch dataloader object for dataset b.
key_a (str): Dictionary key value for images in the dataset a.
key_b (str): Dictionary key value for images in the dataset b.
sample_size (int): How many samples to be used for computing the KID.
is_video (bool): Whether we are handling video sequences.
num_subsets (int): Number of subsets to sample from the whole data.
subset_size (int): Number of samples in each subset.
Returns:
kid (float): KID value.
"""
min_data_size = min(len(data_loader_a.dataset),
len(data_loader_b.dataset))
if sample_size is None:
sample_size = min_data_size
else:
sample_size = min(sample_size, min_data_size)
print('Computing KID using {} images from both distributions.'.
format(sample_size))
path_a = os.path.join(os.path.dirname(kid_path),
'activations_a.npy')
act_a = load_or_compute_activations(path_a, data_loader_a,
key_a, key_a,
sample_size=sample_size,
is_video=is_video, **kwargs)
act_b = get_activations(data_loader_b, key_b, key_b,
None, sample_size, None, **kwargs)
if is_master():
return _polynomial_mmd_averages(act_a, act_b,
num_subsets,
subset_size,
ret_var=True)["KID"]
def _polynomial_mmd_averages(codes_g, codes_r, n_subsets, subset_size,
ret_var=True, **kernel_args):
r"""Computes MMD between two sets of features using polynomial kernels. It
performs a number of repetitions of subset sampling without replacement.
Args:
codes_g (Tensor): Feature activations of generated images.
codes_r (Tensor): Feature activations of real images.
n_subsets (int): The number of subsets.
subset_size (int): The number of samples in each subset.
ret_var (bool): If ``True``, returns both mean and variance of MMDs,
otherwise only returns the mean.
Returns:
(tuple):
- mmds (Tensor): Mean of MMDs.
- mmd_vars (Tensor): Variance of MMDs.
"""
mmds = np.zeros(n_subsets)
if ret_var:
mmd_vars = np.zeros(n_subsets)
choice = np.random.choice
if subset_size is None:
subset_size = min(len(codes_r), len(codes_r))
print("Subset size not provided, "
"setting it to the data size ({}).".format(subset_size))
if subset_size > len(codes_g) or subset_size > len(codes_r):
subset_size = min(len(codes_r), len(codes_r))
warnings.warn(
"Subset size is large than the actual data size, "
"setting it to the data size ({}).".format(subset_size))
for i in range(n_subsets):
g = codes_g[choice(len(codes_g), subset_size, replace=False)]
r = codes_r[choice(len(codes_r), subset_size, replace=False)]
o = _polynomial_mmd(g, r, **kernel_args, ret_var=ret_var)
if ret_var:
# noinspection PyUnboundLocalVariable
mmds[i], mmd_vars[i] = o
else:
mmds[i] = o
return {'KID': mmds.mean()}
def _polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1.):
r"""Compute the polynomial kernel between X and Y"""
if gamma is None:
gamma = 1.0 / X.shape[1]
if Y is None:
Y = X
# K = safe_sparse_dot(X, Y.T, dense_output=True)
K = torch.matmul(X, Y.t())
K *= gamma
K += coef0
K = K ** degree
return K
def _polynomial_mmd(codes_g, codes_r, degree=3, gamma=None, coef0=1,
ret_var=True):
r"""Computes MMD between two sets of features using polynomial kernels. It
performs a number of repetitions of subset sampling without replacement.
Args:
codes_g (torch.Tensor): Feature activations of generated images.
codes_r (torch.Tensor): Feature activations of real images.
degree (int): The degree of the polynomial kernel.
gamma (float or None): Scale of the polynomial kernel.
coef0 (float or None): Bias of the polynomial kernel.
ret_var (bool): If ``True``, returns both mean and variance of MMDs,
otherwise only returns the mean.
Returns:
(tuple):
- mmds (torch.Tensor): Mean of MMDs.
- mmd_vars (torch.Tensor): Variance of MMDs.
"""
# use k(x, y) = (gamma <x, y> + coef0)^degree
# default gamma is 1 / dim
X = codes_g
Y = codes_r
# with warnings.catch_warnings():
# warnings.simplefilter('ignore')
K_XX = _polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0)
K_YY = _polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0)
K_XY = _polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0)
return _mmd2_and_variance(K_XX, K_XY, K_YY, ret_var=ret_var)
def _mmd2_and_variance(K_XX, K_XY, K_YY, unit_diagonal=False,
mmd_est='unbiased', ret_var=True):
r"""Based on
https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py
but changed to not compute the full kernel matrix at once
"""
m = K_XX.shape[0]
assert K_XX.shape == (m, m)
assert K_XY.shape == (m, m)
assert K_YY.shape == (m, m)
var_at_m = m
# Get the various sums of kernels that we'll use
# Kts drop the diagonal, but we don't need to compute them explicitly
if unit_diagonal:
diag_X = diag_Y = 1
sum_diag_X = sum_diag_Y = m
sum_diag2_X = sum_diag2_Y = m
else:
diag_X = torch.diagonal(K_XX)
diag_Y = torch.diagonal(K_YY)
sum_diag_X = diag_X.sum()
sum_diag_Y = diag_Y.sum()
sum_diag2_X = _sqn(diag_X)
sum_diag2_Y = _sqn(diag_Y)
Kt_XX_sums = K_XX.sum(dim=1) - diag_X
Kt_YY_sums = K_YY.sum(dim=1) - diag_Y
K_XY_sums_0 = K_XY.sum(dim=0)
K_XY_sums_1 = K_XY.sum(dim=1)
Kt_XX_sum = Kt_XX_sums.sum()
Kt_YY_sum = Kt_YY_sums.sum()
K_XY_sum = K_XY_sums_0.sum()
if mmd_est == 'biased':
mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m)
+ (Kt_YY_sum + sum_diag_Y) / (m * m)
- 2 * K_XY_sum / (m * m))
else:
assert mmd_est in {'unbiased', 'u-statistic'}
mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m - 1))
if mmd_est == 'unbiased':
mmd2 -= 2 * K_XY_sum / (m * m)
else:
mmd2 -= 2 * (K_XY_sum - torch.trace(K_XY)) / (m * (m - 1))
if not ret_var:
return mmd2
Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X
Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y
K_XY_2_sum = _sqn(K_XY)
dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1)
dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0)
m1 = m - 1
m2 = m - 2
zeta1_est = (
1 / (m * m1 * m2) *
(_sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum)
- 1 / (m * m1) ** 2 * (Kt_XX_sum ** 2 + Kt_YY_sum ** 2)
+ 1 / (m * m * m1) * (
_sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum)
- 2 / m ** 4 * K_XY_sum ** 2
- 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
+ 2 / (m ** 3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
)
zeta2_est = (
1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum)
- 1 / (m * m1) ** 2 * (Kt_XX_sum ** 2 + Kt_YY_sum ** 2)
+ 2 / (m * m) * K_XY_2_sum
- 2 / m ** 4 * K_XY_sum ** 2
- 4 / (m * m * m1) * (dot_XX_XY + dot_YY_YX)
+ 4 / (m ** 3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
)
var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est
+ 2 / (var_at_m * (var_at_m - 1)) * zeta2_est)
return mmd2.cpu().numpy(), var_est.cpu().numpy()
def _sqn(arr):
r"""Squared norm."""
flat = arr.view(-1)
return flat.dot(flat)
|