File size: 26,633 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import math
import os
from functools import partial
import torch
import torch.distributed as dist
from torch import nn
from torch.nn import functional as F
from torchvision.models import inception_v3
from cleanfid.features import feature_extractor
from cleanfid.resize import build_resizer

from imaginaire.evaluation.lpips import get_lpips_model
from imaginaire.evaluation.segmentation import get_segmentation_hist_model, get_miou
from imaginaire.evaluation.caption import get_image_encoder, get_r_precision
from imaginaire.evaluation.pretrained import TFInceptionV3, InceptionV3, Vgg16, SwAV
from imaginaire.utils.distributed import (dist_all_gather_tensor, get_rank,
                                          get_world_size, is_master,
                                          is_local_master)
from imaginaire.utils.distributed import master_only_print
from imaginaire.utils.misc import apply_imagenet_normalization, to_cuda


@torch.no_grad()
def compute_all_metrics(act_dir,
                        data_loader,
                        net_G,
                        key_real='images',
                        key_fake='fake_images',
                        sample_size=None,
                        preprocess=None,
                        is_video=False,
                        few_shot_video=False,
                        kid_num_subsets=1,
                        kid_subset_size=None,
                        key_prefix='',
                        prdc_k=5,
                        metrics=None,
                        dataset_name='',
                        aws_credentials=None,
                        **kwargs):
    r"""
    Args:
        act_dir (string): Path to a directory to temporarily save feature activations.
        data_loader (obj): PyTorch dataloader object.
        net_G (obj): The generator module.
        key_real (str): Dictionary key value for the real data.
        key_fake (str): Dictionary key value for the fake data.
        sample_size (int or None): How many samples to use for FID.
        preprocess (func or None): Pre-processing function to use.
        is_video (bool): Whether we are handling video sequences.
        few_shot_video (bool): If ``True``, uses few-shot video synthesis.
        kid_num_subsets (int): Number of subsets for KID evaluation.
        kid_subset_size (int or None): The number of samples in each subset for KID evaluation.
        key_prefix (string): Add this string before all keys of the output dictionary.
        prdc_k (int): The K used for computing K-NN when evaluating precision/recall/density/coverage.
        metrics (list of strings): Which metrics we want to evaluate.
        dataset_name (string): The name of the dataset, currently only used to determine which segmentation network to
            use for segmentation evaluation.
    Returns:
        batch_y (tensor): Inception features of the current batch. Note that
            only the master gpu will get it.
    """

    from imaginaire.evaluation.fid import _calculate_frechet_distance
    from imaginaire.evaluation.kid import _polynomial_mmd_averages
    from imaginaire.evaluation.prdc import _get_prdc
    from imaginaire.evaluation.msid import _get_msid
    from imaginaire.evaluation.knn import _get_1nn_acc
    if metrics is None:
        metrics = []
    act_path = os.path.join(act_dir, 'activations_real.pt')

    # Get feature activations and other outputs computed from fake images.
    output_module_dict = nn.ModuleDict()
    if "seg_mIOU" in metrics:
        output_module_dict["seg_mIOU"] = get_segmentation_hist_model(dataset_name, aws_credentials)
    if "caption_rprec" in metrics:
        output_module_dict["caption_rprec"] = get_image_encoder(aws_credentials)
    if "LPIPS" in metrics:
        output_module_dict["LPIPS"] = get_lpips_model()

    fake_outputs = get_outputs(
        data_loader, key_real, key_fake, net_G, sample_size, preprocess,
        output_module_dict=output_module_dict, **kwargs
    )
    fake_act = fake_outputs["activations"]

    # Get feature activations computed from real images.
    real_act = load_or_compute_activations(
        act_path, data_loader, key_real, key_fake, None,
        sample_size, preprocess, is_video=is_video,
        few_shot_video=few_shot_video, **kwargs
    )

    metrics_from_activations = {
        "1NN": _get_1nn_acc,
        "MSID": _get_msid,
        "FID": _calculate_frechet_distance,
        "KID": partial(_polynomial_mmd_averages,
                       n_subsets=kid_num_subsets,
                       subset_size=kid_subset_size,
                       ret_var=True),
        "PRDC": partial(_get_prdc, nearest_k=prdc_k)
    }

    other_metrics = {
        "seg_mIOU": get_miou,
        "caption_rprec": get_r_precision,
        "LPIPS": lambda x: {"LPIPS": torch.mean(x).item()}
    }

    all_metrics = {}
    if is_master():
        for metric in metrics:
            if metric in metrics_from_activations:
                metric_function = metrics_from_activations[metric]
                metric_dict = metric_function(real_act, fake_act)
            elif metric in other_metrics:
                metric_function = other_metrics[metric]
                if fake_outputs[metric] is not None:
                    metric_dict = metric_function(fake_outputs[metric])
            else:
                print(f"{metric} is not implemented!")
                raise NotImplementedError
            for k, v in metric_dict.items():
                all_metrics.update({key_prefix + k: v})
    if dist.is_initialized():
        dist.barrier()
    return all_metrics


@torch.no_grad()
def compute_all_metrics_data(data_loader_a,
                             data_loader_b,
                             key_a='images',
                             key_b='images',
                             sample_size=None,
                             preprocess=None,
                             kid_num_subsets=1,
                             kid_subset_size=None,
                             key_prefix='',
                             prdc_k=5,
                             metrics=None,
                             dataset_name='',
                             aws_credentials=None,
                             **kwargs):
    r"""
    Args:
        act_dir (string): Path to a directory to temporarily save feature activations.
        data_loader (obj): PyTorch dataloader object.
        net_G (obj): The generator module.
        key_a (str): Dictionary key value for the real data.
        key_b (str): Dictionary key value for the fake data.
        sample_size (int or None): How many samples to use for FID.
        preprocess (func or None): Pre-processing function to use.
        is_video (bool): Whether we are handling video sequences.
        few_shot_video (bool): If ``True``, uses few-shot video synthesis.
        kid_num_subsets (int): Number of subsets for KID evaluation.
        kid_subset_size (int or None): The number of samples in each subset for KID evaluation.
        key_prefix (string): Add this string before all keys of the output dictionary.
        prdc_k (int): The K used for computing K-NN when evaluating precision/recall/density/coverage.
        metrics (list of strings): Which metrics we want to evaluate.
        dataset_name (string): The name of the dataset, currently only used to determine which segmentation network to
            use for segmentation evaluation.
    Returns:
        batch_y (tensor): Inception features of the current batch. Note that
            only the master gpu will get it.
    """

    from imaginaire.evaluation.fid import _calculate_frechet_distance
    from imaginaire.evaluation.kid import _polynomial_mmd_averages
    from imaginaire.evaluation.prdc import _get_prdc
    from imaginaire.evaluation.msid import _get_msid
    from imaginaire.evaluation.knn import _get_1nn_acc
    if metrics is None:
        metrics = []

    min_data_size = min(len(data_loader_a.dataset),
                        len(data_loader_b.dataset))
    if sample_size is None:
        sample_size = min_data_size
    else:
        sample_size = min(sample_size, min_data_size)

    # Get feature activations and other outputs computed from fake images.
    output_module_dict = nn.ModuleDict()
    if "seg_mIOU" in metrics:
        output_module_dict["seg_mIOU"] = get_segmentation_hist_model(dataset_name, aws_credentials)
    if "caption_rprec" in metrics:
        output_module_dict["caption_rprec"] = get_image_encoder(aws_credentials)
    if "LPIPS" in metrics:
        output_module_dict["LPIPS"] = get_lpips_model()

    fake_outputs = get_outputs(
        data_loader_b, key_a, key_b, None, sample_size, preprocess,
        output_module_dict=output_module_dict, **kwargs
    )
    act_b = fake_outputs["activations"]

    act_a = load_or_compute_activations(
        None, data_loader_a, key_a, key_b, None, sample_size, preprocess,
        output_module_dict=output_module_dict, **kwargs
    )

    # act_b = load_or_compute_activations(
    #     None, data_loader_b, key_a, key_b, None, sample_size, preprocess,
    #     output_module_dict=output_module_dict, generate_twice=generate_twice, **kwargs
    # )

    metrics_from_activations = {
        "1NN": _get_1nn_acc,
        "MSID": _get_msid,
        "FID": _calculate_frechet_distance,
        "KID": partial(_polynomial_mmd_averages,
                       n_subsets=kid_num_subsets,
                       subset_size=kid_subset_size,
                       ret_var=True),
        "PRDC": partial(_get_prdc, nearest_k=prdc_k)
    }

    other_metrics = {
        "seg_mIOU": get_miou,
        "caption_rprec": get_r_precision,
        "LPIPS": lambda x: {"LPIPS": torch.mean(x).item()}
    }

    all_metrics = {}
    if is_master():
        for metric in metrics:
            if metric in metrics_from_activations:
                metric_function = metrics_from_activations[metric]
                metric_dict = metric_function(act_a, act_b)
            elif metric in other_metrics:
                metric_function = other_metrics[metric]
                if fake_outputs[metric] is not None:
                    metric_dict = metric_function(fake_outputs[metric])
            else:
                print(f"{metric} is not implemented!")
                raise NotImplementedError
            for k, v in metric_dict.items():
                all_metrics.update({key_prefix + k: v})
    if dist.is_initialized():
        dist.barrier()
    return all_metrics


@torch.no_grad()
def get_activations(data_loader, key_real, key_fake,
                    generator=None, sample_size=None, preprocess=None,
                    align_corners=True, network='inception', **kwargs):
    r"""Compute activation values and pack them in a list.

    Args:
        data_loader (obj): PyTorch dataloader object.
        key_real (str): Dictionary key value for the real data.
        key_fake (str): Dictionary key value for the fake data.
        generator (obj): PyTorch trainer network.
        sample_size (int): How many samples to use for FID.
        preprocess (func): Pre-processing function to use.
        align_corners (bool): The ``'align_corners'`` parameter to be used for
            `torch.nn.functional.interpolate`.
    Returns:
        batch_y (tensor): Inception features of the current batch. Note that
            only the master gpu will get it.
    """
    if dist.is_initialized() and not is_local_master():
        # Make sure only the first process in distributed training downloads
        # the model, and the others will use the cache
        # noinspection PyUnresolvedReferences
        torch.distributed.barrier()

    if network == 'tf_inception':
        model = TFInceptionV3()
    elif network == 'inception':
        model = InceptionV3()
    elif network == 'vgg16':
        model = Vgg16()
    elif network == 'swav':
        model = SwAV()
    elif network == 'clean_inception':
        model = CleanInceptionV3()
    else:
        raise NotImplementedError(f'Network "{network}" is not supported!')

    if dist.is_initialized() and is_local_master():
        # Make sure only the first process in distributed training downloads
        # the model, and the others will use the cache
        # noinspection PyUnresolvedReferences
        dist.barrier()

    model = model.to('cuda').eval()
    world_size = get_world_size()
    batch_y = []

    # Iterate through the dataset to compute the activation.
    for it, data in enumerate(data_loader):
        data = to_cuda(data)
        # Preprocess the data.
        if preprocess is not None:
            data = preprocess(data)
        # Load real data if the generator is not specified.
        if generator is None:
            images = data[key_real]
        else:
            # Compute the generated image.
            net_G_output = generator(data, **kwargs)
            images = net_G_output[key_fake]
        # Clamp the image for models that do not set the output to between
        # -1, 1. For models that employ tanh, this has no effect.
        images.clamp_(-1, 1)
        y = model(images, align_corners=align_corners)
        batch_y.append(y)
        if sample_size is not None and \
                data_loader.batch_size * world_size * (it + 1) >= sample_size:
            # Reach the number of samples we need.
            break

    batch_y = torch.cat(dist_all_gather_tensor(torch.cat(batch_y)))
    if sample_size is not None:
        batch_y = batch_y[:sample_size]
    print(f"Computed feature activations of size {batch_y.shape}")
    return batch_y


class CleanInceptionV3(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = feature_extractor(name="torchscript_inception", resize_inside=False)

    def forward(self, img_batch, transform=True, **_kwargs):
        if transform:
            # Assume the input is (-1, 1). We transform it to (0, 255) and round it to the closest integer.
            img_batch = torch.round(255 * (0.5 * img_batch + 0.5))
        resized_batch = clean_resize(img_batch)
        return self.model(resized_batch)


def clean_resize(img_batch):
    # Resize images from arbitrary resolutions to 299x299.
    batch_size = img_batch.size(0)
    img_batch = img_batch.cpu().numpy()
    fn_resize = build_resizer('clean')
    resized_batch = torch.zeros(batch_size, 3, 299, 299, device='cuda')
    for idx in range(batch_size):
        curr_img = img_batch[idx]
        img_np = curr_img.transpose((1, 2, 0))
        img_resize = fn_resize(img_np)
        resized_batch[idx] = torch.tensor(img_resize.transpose((2, 0, 1)), device='cuda')
    resized_batch = resized_batch.cuda()
    return resized_batch


@torch.no_grad()
def get_outputs(data_loader, key_real, key_fake,
                generator=None, sample_size=None, preprocess=None,
                align_corners=True, network='inception',
                output_module_dict=None, **kwargs):
    r"""Compute activation values and pack them in a list.

    Args:
        data_loader (obj): PyTorch dataloader object.
        key_real (str): Dictionary key value for the real data.
        key_fake (str): Dictionary key value for the fake data.
        generator (obj): PyTorch trainer network.
        sample_size (int): How many samples to use for FID.
        preprocess (func): Pre-processing function to use.
        align_corners (bool): The ``'align_corners'`` parameter to be used for `torch.nn.functional.interpolate`.
    Returns:
        batch_y (tensor): Inception features of the current batch. Note that
            only the master gpu will get it.
    """
    if output_module_dict is None:
        output_module_dict = nn.ModuleDict()
    if dist.is_initialized() and not is_local_master():
        # Make sure only the first process in distributed training downloads
        # the model, and the others will use the cache
        # noinspection PyUnresolvedReferences
        torch.distributed.barrier()

    if network == 'tf_inception':
        model = TFInceptionV3()
    elif network == 'inception':
        model = InceptionV3()
    elif network == 'vgg16':
        model = Vgg16()
    elif network == 'swav':
        model = SwAV()
    elif network == 'clean_inception':
        model = CleanInceptionV3()
    else:
        raise NotImplementedError(f'Network "{network}" is not supported!')

    if dist.is_initialized() and is_local_master():
        # Make sure only the first process in distributed training downloads
        # the model, and the others will use the cache
        # noinspection PyUnresolvedReferences
        dist.barrier()

    model = model.to('cuda').eval()
    world_size = get_world_size()
    output = {}
    for k in output_module_dict.keys():
        output[k] = []
    output["activations"] = []

    # Iterate through the dataset to compute the activation.
    for it, data in enumerate(data_loader):
        data = to_cuda(data)
        # Preprocess the data.
        if preprocess is not None:
            data = preprocess(data)
        # Load real data if the generator is not specified.
        if generator is None:
            images = data[key_real]
        else:
            # Compute the generated image.
            net_G_output = generator(data, **kwargs)
            images = net_G_output[key_fake]
        for metric_name, metric_module in output_module_dict.items():
            if metric_module is not None:
                if metric_name == 'LPIPS':
                    assert generator is not None
                    net_G_output_another = generator(data, **kwargs)
                    images_another = net_G_output_another[key_fake]
                    output[metric_name].append(metric_module(images, images_another))
                else:
                    output[metric_name].append(metric_module(data, images, align_corners=align_corners))
        # Clamp the image for models that do not set the output to between
        # -1, 1. For models that employ tanh, this has no effect.
        images.clamp_(-1, 1)
        y = model(images, align_corners=align_corners)
        output["activations"].append(y)
        if sample_size is not None and data_loader.batch_size * world_size * (it + 1) >= sample_size:
            # Reach the number of samples we need.
            break

    for k, v in output.items():
        if len(v) > 0:
            output[k] = torch.cat(dist_all_gather_tensor(torch.cat(v)))[:sample_size]
        else:
            output[k] = None
    return output


@torch.no_grad()
def get_video_activations(data_loader, key_real, key_fake, trainer=None,
                          sample_size=None, preprocess=None, few_shot=False):
    r"""Compute activation values and pack them in a list. We do not do all
    reduce here.

    Args:
        data_loader (obj): PyTorch dataloader object.
        key_real (str): Dictionary key value for the real data.
        key_fake (str): Dictionary key value for the fake data.
        trainer (obj): Trainer. Video generation is more involved, we rely on
            the "reset" and "test" function to conduct the evaluation.
        sample_size (int): For computing video activation, we will use .
        preprocess (func): The preprocess function to be applied to the data.
        few_shot (bool): If ``True``, uses the few-shot setting.
    Returns:
        batch_y (tensor): Inception features of the current batch. Note that
            only the master gpu will get it.
    """
    inception = inception_init()
    batch_y = []

    # We divide video sequences to different GPUs for testing.
    num_sequences = data_loader.dataset.num_inference_sequences()
    if sample_size is None:
        num_videos_to_test = 10
        num_frames_per_video = 5
    else:
        num_videos_to_test, num_frames_per_video = sample_size
    if num_videos_to_test == -1:
        num_videos_to_test = num_sequences
    else:
        num_videos_to_test = min(num_videos_to_test, num_sequences)
    master_only_print('Number of videos used for evaluation: {}'.format(num_videos_to_test))
    master_only_print('Number of frames per video used for evaluation: {}'.format(num_frames_per_video))

    world_size = get_world_size()
    if num_videos_to_test < world_size:
        seq_to_run = [get_rank() % num_videos_to_test]
    else:
        num_videos_to_test = num_videos_to_test // world_size * world_size
        seq_to_run = range(get_rank(), num_videos_to_test, world_size)

    for sequence_idx in seq_to_run:
        data_loader = set_sequence_idx(few_shot, data_loader, sequence_idx)
        if trainer is not None:
            trainer.reset()
        for it, data in enumerate(data_loader):
            if few_shot and it == 0:
                continue
            if it >= num_frames_per_video:
                break

            # preprocess the data is preprocess is not none.
            if trainer is not None:
                data = trainer.pre_process(data)
            elif preprocess is not None:
                data = preprocess(data)
            data = to_cuda(data)

            if trainer is None:
                images = data[key_real][:, -1]
            else:
                net_G_output = trainer.test_single(data)
                images = net_G_output[key_fake]
            y = inception_forward(inception, images)
            batch_y += [y]

    batch_y = torch.cat(batch_y)
    batch_y = dist_all_gather_tensor(batch_y)
    if is_local_master():
        batch_y = torch.cat(batch_y)
    return batch_y


def inception_init():
    inception = inception_v3(pretrained=True, transform_input=False)
    inception = inception.to('cuda')
    inception.eval()
    inception.fc = torch.nn.Sequential()
    return inception


def inception_forward(inception, images):
    images.clamp_(-1, 1)
    images = apply_imagenet_normalization(images)
    images = F.interpolate(images, size=(299, 299),
                           mode='bicubic', align_corners=True)
    return inception(images)


def gather_tensors(batch_y):
    batch_y = torch.cat(batch_y)
    batch_y = dist_all_gather_tensor(batch_y)
    if is_local_master():
        batch_y = torch.cat(batch_y)
    return batch_y


def set_sequence_idx(few_shot, data_loader, sequence_idx):
    r"""Get sequence index

    Args:
        few_shot (bool): If ``True``, uses the few-shot setting.
        data_loader: dataloader object
        sequence_idx (int): which sequence to use.
    """
    if few_shot:
        data_loader.dataset.set_inference_sequence_idx(sequence_idx,
                                                       sequence_idx,
                                                       0)
    else:
        data_loader.dataset.set_inference_sequence_idx(sequence_idx)
    return data_loader


def load_or_compute_activations(act_path, data_loader, key_real, key_fake,
                                generator=None, sample_size=None,
                                preprocess=None,
                                is_video=False, few_shot_video=False,
                                **kwargs):
    r"""Load mean and covariance from saved npy file if exists. Otherwise,
    compute the mean and covariance.

    Args:
        act_path (str or None): Location for the numpy file to store or to load
            the activations.
        data_loader (obj): PyTorch dataloader object.
        key_real (str): Dictionary key value for the real data.
        key_fake (str): Dictionary key value for the fake data.
        generator (obj): PyTorch trainer network.
        sample_size (int): How many samples to be used for computing the KID.
        preprocess (func): The preprocess function to be applied to the data.
        is_video (bool): Whether we are handling video sequences.
        few_shot_video (bool): If ``True``, uses few-shot video synthesis.
    Returns:
        (torch.Tensor) Feature activations.
    """
    if act_path is not None and os.path.exists(act_path):
        # Loading precomputed activations.
        print('Load activations from {}'.format(act_path))
        act = torch.load(act_path, map_location='cpu').cuda()
    else:
        # Compute activations.
        if is_video:
            act = get_video_activations(
                data_loader, key_real, key_fake, generator,
                sample_size, preprocess, few_shot_video, **kwargs
            )
        else:
            act = get_activations(
                data_loader, key_real, key_fake, generator,
                sample_size, preprocess, **kwargs
            )
        if act_path is not None and is_local_master():
            print('Save activations to {}'.format(act_path))
            if not os.path.exists(os.path.dirname(act_path)):
                os.makedirs(os.path.dirname(act_path), exist_ok=True)
            torch.save(act, act_path)
    return act


def compute_pairwise_distance(data_x, data_y=None, num_splits=10):
    r"""

    Args:
        data_x: numpy.ndarray([N, feature_dim], dtype=np.float32)
        data_y: numpy.ndarray([N, feature_dim], dtype=np.float32)
    Returns:
        numpy.ndarray([N, N], dtype=np.float32) of pairwise distances.
    """
    if data_y is None:
        data_y = data_x
    num_samples = data_x.shape[0]
    assert data_x.shape[0] == data_y.shape[0]
    dists = []
    for i in range(num_splits):
        batch_size = math.ceil(num_samples / num_splits)
        start_idx = i * batch_size
        end_idx = min((i + 1) * batch_size, num_samples)
        dists.append(torch.cdist(data_x[start_idx:end_idx],
                                 data_y).cpu())
    dists = torch.cat(dists, dim=0)
    return dists


def compute_nn(input_features, k, num_splits=50):
    num_samples = input_features.shape[0]
    all_indices = []
    all_values = []
    for i in range(num_splits):
        batch_size = math.ceil(num_samples / num_splits)
        start_idx = i * batch_size
        end_idx = min((i + 1) * batch_size, num_samples)
        dist = torch.cdist(input_features[start_idx:end_idx],
                           input_features)
        dist[:, start_idx:end_idx] += torch.diag(
            float('inf') * torch.ones(dist.size(0), device=dist.device)
        )
        k_smallests, indices = torch.topk(dist, k, dim=-1, largest=False)
        all_indices.append(indices)
        all_values.append(k_smallests)
    return torch.cat(all_values, dim=0), torch.cat(all_indices, dim=0)