File size: 8,725 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import random
import tempfile
from collections import OrderedDict
import warnings
import numpy as np
import torch
# import torchvision.io as io
import cv2
from PIL import Image

from imaginaire.datasets.base import BaseDataset


class Dataset(BaseDataset):
    r"""Dataset for paired few shot videos.

    Args:
        cfg (Config): Loaded config object.
        is_inference (bool): In train or inference mode?
    """

    def __init__(self, cfg, is_inference=False, is_test=False):
        self.paired = True
        super(Dataset, self).__init__(cfg, is_inference, is_test)
        self.is_video_dataset = True
        self.few_shot_K = 1
        self.first_last_only = getattr(cfg.data, 'first_last_only', False)
        self.sample_far_frames_more = getattr(cfg.data, 'sample_far_frames_more', False)

    def get_label_lengths(self):
        r"""Get num channels of all labels to be concated.

        Returns:
            label_lengths (OrderedDict): Dict mapping image data_type to num
            channels.
        """
        label_lengths = OrderedDict()
        for data_type in self.input_labels:
            data_cfg = self.cfgdata
            if hasattr(data_cfg, 'one_hot_num_classes') and \
                    data_type in data_cfg.one_hot_num_classes:
                label_lengths[data_type] = data_cfg.one_hot_num_classes[data_type]
                if getattr(data_cfg, 'use_dont_care', False):
                    label_lengths[data_type] += 1
            else:
                label_lengths[data_type] = self.num_channels[data_type]
        return label_lengths

    def num_inference_sequences(self):
        r"""Number of sequences available for inference.

        Returns:
           (int)
        """
        assert self.is_inference
        return len(self.mapping)

    def _create_mapping(self):
        r"""Creates mapping from idx to key in LMDB.

        Returns:
            (tuple):
              - self.mapping (dict): Dict of seq_len to list of sequences.
              - self.epoch_length (int): Number of samples in an epoch.
        """
        # Create dict mapping length to sequence.
        mapping = []
        for lmdb_idx, sequence_list in enumerate(self.sequence_lists):
            for sequence_name, filenames in sequence_list.items():
                for filename in filenames:
                    # This file is corrupt.
                    if filename == 'z-KziTO_5so_0019_start0_end85_h596_w596':
                        continue
                    mapping.append({
                        'lmdb_root': self.lmdb_roots[lmdb_idx],
                        'lmdb_idx': lmdb_idx,
                        'sequence_name': sequence_name,
                        'filenames': [filename],
                    })
        self.mapping = mapping
        self.epoch_length = len(mapping)

        return self.mapping, self.epoch_length

    def _sample_keys(self, index):
        r"""Gets files to load for this sample.

        Args:
            index (int): Index in [0, len(dataset)].
        Returns:
            (tuple):
              - key (dict):
                - lmdb_idx (int): Chosen LMDB dataset root.
                - sequence_name (str): Chosen sequence in chosen dataset.
                - filenames (list of str): Chosen filenames in chosen sequence.
        """
        if self.is_inference:
            assert index < self.epoch_length
            raise NotImplementedError
        else:
            # Select a video at random.
            key = random.choice(self.mapping)
        return key

    def _create_sequence_keys(self, sequence_name, filenames):
        r"""Create the LMDB key for this piece of information.

        Args:
            sequence_name (str): Which sequence from the chosen dataset.
            filenames (list of str): List of filenames in this sequence.
        Returns:
            keys (list): List of full keys.
        """
        assert isinstance(filenames, list), 'Filenames should be a list.'
        keys = []
        for filename in filenames:
            keys.append('%s/%s' % (sequence_name, filename))
        return keys

    def _getitem(self, index):
        r"""Gets selected files.

        Args:
            index (int): Index into dataset.
            concat (bool): Concatenate all items in labels?
        Returns:
            data (dict): Dict with all chosen data_types.
        """
        # Select a sample from the available data.
        keys = self._sample_keys(index)

        # Unpack keys.
        lmdb_idx = keys['lmdb_idx']
        sequence_name = keys['sequence_name']
        filenames = keys['filenames']

        # Get key and lmdbs.
        keys, lmdbs = {}, {}
        for data_type in self.dataset_data_types:
            keys[data_type] = self._create_sequence_keys(
                sequence_name, filenames)
            lmdbs[data_type] = self.lmdbs[data_type][lmdb_idx]

        # Load all data for this index.
        data = self.load_from_dataset(keys, lmdbs)

        # Get frames from video.
        try:
            temp = tempfile.NamedTemporaryFile()
            temp.write(data['videos'][0])
            temp.seek(0)

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                # frames, _, info = io.read_video(temp)
                # num_frames = frames.size(0)
                cap = cv2.VideoCapture(temp.name)
                num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
            if self.first_last_only:
                chosen_idxs = [0, num_frames - 1]
            else:
                # chosen_idxs = random.sample(range(frames.size(0)), 2)

                chosen_idx = random.sample(range(num_frames), 1)[0]
                few_shot_choose_range = list(range(chosen_idx)) + list(range(chosen_idx + 1, num_frames))
                if self.sample_far_frames_more:
                    choose_weight = list(reversed(range(chosen_idx))) + list(range(num_frames - chosen_idx - 1))
                    few_shot_idx = random.choices(few_shot_choose_range, choose_weight, k=self.few_shot_K)
                else:
                    few_shot_idx = random.sample(few_shot_choose_range, k=self.few_shot_K)
                chosen_idxs = few_shot_idx + [chosen_idx]

            chosen_images = []
            for idx in chosen_idxs:
                # chosen_images.append(Image.fromarray(frames[idx].numpy()))
                cap.set(1, idx)
                _, frame = cap.read()
                chosen_images.append(Image.fromarray(frame[:, :, ::-1]))
        except Exception:
            print('Issue with file:', sequence_name, filenames)
            blank = np.zeros((512, 512, 3), dtype=np.uint8)
            chosen_images = [Image.fromarray(blank), Image.fromarray(blank)]

        data['videos'] = chosen_images

        # Apply ops pre augmentation.
        data = self.apply_ops(data, self.pre_aug_ops)

        # Do augmentations for images.
        data, is_flipped = self.perform_augmentation(
            data, paired=True, augment_ops=self.augmentor.augment_ops)
        # Individual video frame augmentation is used in face-vid2vid.
        data = self.perform_individual_video_frame(
            data, self.augmentor.individual_video_frame_augmentation_ops)

        # Apply ops post augmentation.
        data = self.apply_ops(data, self.post_aug_ops)

        # Convert images to tensor.
        data = self.to_tensor(data)

        # Pack the sequence of images.
        for data_type in self.image_data_types:
            for idx in range(len(data[data_type])):
                data[data_type][idx] = data[data_type][idx].unsqueeze(0)
            data[data_type] = torch.cat(data[data_type], dim=0)

        if not self.is_video_dataset:
            # Remove any extra dimensions.
            for data_type in self.image_data_types:
                if data_type in data:
                    data[data_type] = data[data_type].squeeze(0)

        # Prepare output.
        data['driving_images'] = data['videos'][self.few_shot_K:]
        data['source_images'] = data['videos'][:self.few_shot_K]
        data.pop('videos')
        data['is_flipped'] = is_flipped
        data['key'] = keys
        data['original_h_w'] = torch.IntTensor([
            self.augmentor.original_h, self.augmentor.original_w])

        # Apply full data ops.
        data = self.apply_ops(data, self.full_data_ops, full_data=True)

        return data

    def __getitem__(self, index):
        return self._getitem(index)