File size: 24,767 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
"""All datasets are inherited from this class."""

import importlib
import json
import os
import pickle
from collections import OrderedDict
from functools import partial
from inspect import signature

import numpy as np
import torch
import torch.utils.data as data
import torchvision.transforms as transforms

from imaginaire.datasets.folder import FolderDataset
from imaginaire.datasets.lmdb import \
    IMG_EXTENSIONS, HDR_IMG_EXTENSIONS, LMDBDataset
from imaginaire.datasets.object_store import ObjectStoreDataset
from imaginaire.utils.data import \
    (VIDEO_EXTENSIONS, Augmentor,
     load_from_folder, load_from_lmdb, load_from_object_store)
from imaginaire.utils.lmdb import create_metadata


DATASET_TYPES = ['lmdb', 'folder', 'object_store']


class BaseDataset(data.Dataset):
    r"""Base class for image/video datasets.

    Args:
        cfg (Config object): Input config.
        is_inference (bool): Training if False, else validation.
        is_test (bool): Final test set after training and validation.
    """

    def __init__(self, cfg, is_inference, is_test):
        super(BaseDataset, self).__init__()

        self.cfg = cfg
        self.is_inference = is_inference
        self.is_test = is_test
        if self.is_test:
            self.cfgdata = self.cfg.test_data
            data_info = self.cfgdata.test
        else:
            self.cfgdata = self.cfg.data
            if self.is_inference:
                data_info = self.cfgdata.val
            else:
                data_info = self.cfgdata.train
        self.name = self.cfgdata.name
        self.lmdb_roots = data_info.roots
        self.dataset_type = getattr(data_info, 'dataset_type', None)
        self.cache = getattr(self.cfgdata, 'cache', None)
        self.interpolator = getattr(self.cfgdata, 'interpolator', "INTER_LINEAR")

        # Get AWS secret keys.
        if self.dataset_type == 'object_store':
            assert hasattr(cfg, 'aws_credentials_file')
            self.aws_credentials_file = cfg.aws_credentials_file

        # Legacy lmdb/folder only support.
        if self.dataset_type is None:
            self.dataset_is_lmdb = getattr(data_info, 'is_lmdb', False)
            if self.dataset_is_lmdb:
                self.dataset_type = 'lmdb'
            else:
                self.dataset_type = 'folder'
        # Legacy support ends.

        assert self.dataset_type in DATASET_TYPES
        if self.dataset_type == 'lmdb':
            # Add handle to function to load data from LMDB.
            self.load_from_dataset = load_from_lmdb
        elif self.dataset_type == 'folder':
            # For some unpaired experiments, we would like the dataset to be presented in a paired way

            if hasattr(self.cfgdata, 'paired') is False:
                self.cfgdata.paired = self.paired
            # Add handle to function to load data from folder.
            self.load_from_dataset = load_from_folder
            # Create metadata for folders.
            print('Creating metadata')
            all_filenames, all_metadata = [], []
            if self.is_test:
                cfg.data_backup = cfg.data
                cfg.data = cfg.test_data
            for root in self.lmdb_roots:
                filenames, metadata = create_metadata(
                    data_root=root, cfg=cfg, paired=self.cfgdata['paired'])
                all_filenames.append(filenames)
                all_metadata.append(metadata)
            if self.is_test:
                cfg.data = cfg.data_backup
        elif self.dataset_type == 'object_store':
            # Add handle to function to load data from AWS S3.
            self.load_from_dataset = load_from_object_store

        # Get the types of data stored in dataset, and their extensions.
        self.data_types = []  # Names of data types.
        self.dataset_data_types = []  # These data types are in the dataset.
        self.image_data_types = []  # These types are images.
        self.hdr_image_data_types = []  # These types are HDR images.
        self.normalize = {}  # Does this data type need normalization?
        self.extensions = {}  # What is this data type's file extension.
        self.is_mask = {}  # Whether this data type is discrete masks?
        self.num_channels = {}  # How many channels does this data type have?
        self.pre_aug_ops = {}  # Ops on data type before augmentation.
        self.post_aug_ops = {}  # Ops on data type after augmentation.

        # Extract info from data types.
        for data_type in self.cfgdata.input_types:
            name = list(data_type.keys())
            assert len(name) == 1
            name = name[0]
            info = data_type[name]

            if 'ext' not in info:
                info['ext'] = None
            if 'normalize' not in info:
                info['normalize'] = False
            if 'is_mask' not in info:
                info['is_mask'] = False
            if 'pre_aug_ops' not in info:
                info['pre_aug_ops'] = 'None'
            if 'post_aug_ops' not in info:
                info['post_aug_ops'] = 'None'
            if 'computed_on_the_fly' not in info:
                info['computed_on_the_fly'] = False
            if 'num_channels' not in info:
                info['num_channels'] = None

            self.data_types.append(name)
            if not info['computed_on_the_fly']:
                self.dataset_data_types.append(name)

            self.extensions[name] = info['ext']
            self.normalize[name] = info['normalize']
            self.num_channels[name] = info['num_channels']
            self.pre_aug_ops[name] = [op.strip() for op in
                                      info['pre_aug_ops'].split(',')]
            self.post_aug_ops[name] = [op.strip() for op in
                                       info['post_aug_ops'].split(',')]
            self.is_mask[name] = info['is_mask']
            if info['ext'] is not None and (info['ext'] in IMG_EXTENSIONS or info['ext'] in VIDEO_EXTENSIONS):
                self.image_data_types.append(name)
            if info['ext'] is not None and info['ext'] in HDR_IMG_EXTENSIONS:
                self.hdr_image_data_types.append(name)

        # Add some info into cfgdata for legacy support.
        self.cfgdata.data_types = self.data_types
        self.cfgdata.num_channels = [self.num_channels[name]
                                     for name in self.data_types]

        # Augmentations which need full dict.
        self.full_data_post_aug_ops, self.full_data_ops = [], []
        if hasattr(self.cfgdata, 'full_data_ops'):
            ops = self.cfgdata.full_data_ops
            self.full_data_ops.extend([op.strip() for op in ops.split(',')])
        if hasattr(self.cfgdata, 'full_data_post_aug_ops'):
            ops = self.cfgdata.full_data_post_aug_ops
            self.full_data_post_aug_ops.extend(
                [op.strip() for op in ops.split(',')])

        # These are the labels which will be concatenated for generator input.
        self.input_labels = []
        if hasattr(self.cfgdata, 'input_labels'):
            self.input_labels = self.cfgdata.input_labels

        # These are the keypoints which also need to be augmented.
        self.keypoint_data_types = []
        if hasattr(self.cfgdata, 'keypoint_data_types'):
            self.keypoint_data_types = self.cfgdata.keypoint_data_types

        # Create augmentation operations.
        aug_list = data_info.augmentations
        individual_video_frame_aug_list = getattr(data_info, 'individual_video_frame_augmentations', dict())
        self.augmentor = Augmentor(
            aug_list, individual_video_frame_aug_list, self.image_data_types, self.is_mask,
            self.keypoint_data_types, self.interpolator)
        self.augmentable_types = self.image_data_types + \
            self.keypoint_data_types

        # Create torch transformations.
        self.transform = {}
        for data_type in self.image_data_types:
            normalize = self.normalize[data_type]
            self.transform[data_type] = self._get_transform(
                normalize, self.num_channels[data_type])

        # Create torch transformations for HDR images.
        for data_type in self.hdr_image_data_types:
            normalize = self.normalize[data_type]
            self.transform[data_type] = self._get_transform(
                normalize, self.num_channels[data_type])

        # Initialize handles.
        self.sequence_lists = []  # List of sequences per dataset root.
        self.lmdbs = {}  # Dict for list of lmdb handles per data type.
        for data_type in self.dataset_data_types:
            self.lmdbs[data_type] = []
        self.dataset_probability = None
        self.additional_lists = []

        # Load each dataset.
        for idx, root in enumerate(self.lmdb_roots):
            if self.dataset_type == 'lmdb':
                self._add_dataset(root)
            elif self.dataset_type == 'folder':
                self._add_dataset(root, filenames=all_filenames[idx],
                                  metadata=all_metadata[idx])
            elif self.dataset_type == 'object_store':
                self._add_dataset(
                    root, aws_credentials_file=self.aws_credentials_file)

        # Compute dataset statistics and create whatever self.variables required
        # for the specific dataloader.
        self._compute_dataset_stats()

        # Build index of data to sample.
        self.mapping, self.epoch_length = self._create_mapping()

    def _create_mapping(self):
        r"""Creates mapping from data sample idx to actual LMDB keys.
            All children need to implement their own.

        Returns:
            self.mapping (list): List of LMDB keys.
        """
        raise NotImplementedError

    def _compute_dataset_stats(self):
        r"""Computes required statistics about dataset.
           All children need to implement their own.
        """
        pass

    def __getitem__(self, index):
        r"""Entry function for dataset."""
        raise NotImplementedError

    def _get_transform(self, normalize, num_channels):
        r"""Convert numpy to torch tensor.

        Args:
            normalize (bool): Normalize image i.e. (x - 0.5) * 2.
                Goes from [0, 1] -> [-1, 1].
        Returns:
            Composed list of torch transforms.
        """
        transform_list = [transforms.ToTensor()]
        if normalize:
            transform_list.append(
                transforms.Normalize((0.5, ) * num_channels,
                                     (0.5, ) * num_channels, inplace=True))
        return transforms.Compose(transform_list)

    def _add_dataset(self, root, filenames=None, metadata=None,
                     aws_credentials_file=None):
        r"""Adds an LMDB dataset to a list of datasets.

        Args:
            root (str): Path to LMDB or folder dataset.
            filenames: List of filenames for folder dataset.
            metadata: Metadata for folder dataset.
            aws_credentials_file: Path to file containing AWS credentials.
        """
        if aws_credentials_file and self.dataset_type == 'object_store':
            object_store_dataset = ObjectStoreDataset(
                root, aws_credentials_file, cache=self.cache)
            sequence_list = object_store_dataset.sequence_list
        else:
            # Get sequences associated with this dataset.
            if filenames is None:
                list_path = 'all_filenames.json'
                with open(os.path.join(root, list_path)) as fin:
                    sequence_list = OrderedDict(json.load(fin))
            else:
                sequence_list = filenames

            additional_path = 'all_indices.json'
            if os.path.exists(os.path.join(root, additional_path)):
                print('Using additional list for object indices.')
                with open(os.path.join(root, additional_path)) as fin:
                    additional_list = OrderedDict(json.load(fin))
                self.additional_lists.append(additional_list)
        self.sequence_lists.append(sequence_list)

        # Get LMDB dataset handles.
        for data_type in self.dataset_data_types:
            if self.dataset_type == 'lmdb':
                self.lmdbs[data_type].append(
                    LMDBDataset(os.path.join(root, data_type)))
            elif self.dataset_type == 'folder':
                self.lmdbs[data_type].append(
                    FolderDataset(os.path.join(root, data_type), metadata))
            elif self.dataset_type == 'object_store':
                # All data types use the same handle.
                self.lmdbs[data_type].append(object_store_dataset)

    def perform_individual_video_frame(self, data, augment_ops):
        r"""Perform data augmentation on images only.

        Args:
            data (dict): Keys are from data types. Values can be numpy.ndarray
                or list of numpy.ndarray (image or list of images).
            augment_ops (list): The augmentation operations for individual frames.
        Returns:
            (tuple):
              - data (dict): Augmented data, with same keys as input data.
              - is_flipped (bool): Flag which tells if images have been
                left-right flipped.
        """
        if augment_ops:
            all_data = dict()
            for ix, key in enumerate(data.keys()):
                if ix == 0:
                    num = len(data[key])
                    for j in range(num):
                        all_data['%d' % j] = dict()
                for j in range(num):
                    all_data['%d' % j][key] = data[key][j:(j+1)]
            for j in range(num):
                all_data['%d' % j], _ = self.perform_augmentation(
                    all_data['%d' % j], paired=True, augment_ops=augment_ops)
            for key in data.keys():
                tmp = []
                for j in range(num):
                    tmp += all_data['%d' % j][key]
                data[key] = tmp
        return data

    def perform_augmentation(self, data, paired, augment_ops=None):
        r"""Perform data augmentation on images only.

        Args:
            data (dict): Keys are from data types. Values can be numpy.ndarray
                or list of numpy.ndarray (image or list of images).
            paired (bool): Apply same augmentation to all input keys?
            augment_ops (list): The augmentation operations.
        Returns:
            (tuple):
              - data (dict): Augmented data, with same keys as input data.
              - is_flipped (bool): Flag which tells if images have been
                left-right flipped.
        """
        aug_inputs = {}
        for data_type in self.augmentable_types:
            aug_inputs[data_type] = data[data_type]

        augmented, is_flipped = self.augmentor.perform_augmentation(
            aug_inputs, paired=paired, augment_ops=augment_ops)

        for data_type in self.augmentable_types:
            data[data_type] = augmented[data_type]

        return data, is_flipped

    def flip_hdr(self, data, is_flipped=False):
        r"""Flip hdr images.

        Args:
            data (dict): Keys are from data types. Values can be numpy.ndarray
                or list of numpy.ndarray (image or list of images).
            is_flipped (bool): Applying left-right flip to the hdr images
        Returns:
            (tuple):
              - data (dict): Augmented data, with same keys as input data.
        """
        if is_flipped is False:
            return data

        for data_type in self.hdr_image_data_types:
            # print('Length of data: {}'.format(len(data[data_type])))
            data[data_type][0] = data[data_type][0][:, ::-1, :].copy()
        return data

    def to_tensor(self, data):
        r"""Convert all images to tensor.

        Args:
            data (dict): Dict containing data_type as key, with each value
                as a list of numpy.ndarrays.
        Returns:
            data (dict): Dict containing data_type as key, with each value
            as a list of torch.Tensors.
        """
        for data_type in self.image_data_types:
            for idx in range(len(data[data_type])):
                if data[data_type][idx].dtype == np.uint16:
                    data[data_type][idx] = data[data_type][idx].astype(
                        np.float32)
                data[data_type][idx] = self.transform[data_type](
                    data[data_type][idx])
        for data_type in self.hdr_image_data_types:
            for idx in range(len(data[data_type])):
                data[data_type][idx] = self.transform[data_type](
                    data[data_type][idx])
        return data

    def apply_ops(self, data, op_dict, full_data=False):
        r"""Apply any ops from op_dict to data types.

        Args:
            data (dict): Dict containing data_type as key, with each value
                as a list of numpy.ndarrays.
            op_dict (dict): Dict containing data_type as key, with each value
                containing string of operations to apply.
            full_data (bool): Do these ops require access to the full data?
        Returns:
            data (dict): Dict containing data_type as key, with each value
            modified by the op if any.
        """
        if full_data:
            # op needs entire data dict.
            for op in op_dict:
                if op == 'None':
                    continue
                op, op_type = self.get_op(op)
                assert op_type == 'full_data'
                data = op(data)
        else:
            # op per data type.
            if not op_dict:
                return data
            for data_type in data:
                for op in op_dict[data_type]:
                    if op == 'None':
                        continue
                    op, op_type = self.get_op(op)
                    data[data_type] = op(data[data_type])

                    if op_type == 'vis':
                        # We have converted this data type to an image. Enter it
                        # in self.image_data_types and give it a torch
                        # transform.
                        if data_type not in self.image_data_types:
                            self.image_data_types.append(data_type)
                            normalize = self.normalize[data_type]
                            num_channels = self.num_channels[data_type]
                            self.transform[data_type] = \
                                self._get_transform(normalize, num_channels)
                    elif op_type == 'convert':
                        continue
                    elif op_type is None:
                        continue
                    else:
                        raise NotImplementedError
        return data

    def get_op(self, op):
        r"""Get function to apply for specific op.

        Args:
            op (str): Name of the op.
        Returns:
            function handle.
        """
        def list_to_tensor(data):
            r"""Convert list of numeric values to tensor."""
            assert isinstance(data, list)
            return torch.from_numpy(np.array(data, dtype=np.float32))

        def decode_json_list(data):
            r"""Decode list of strings in json to objects."""
            assert isinstance(data, list)
            return [json.loads(item) for item in data]

        def decode_pkl_list(data):
            r"""Decode list of pickled strings to objects."""
            assert isinstance(data, list)
            return [pickle.loads(item) for item in data]

        def list_to_numpy(data):
            r"""Convert list of numeric values to numpy array."""
            assert isinstance(data, list)
            return np.array(data)

        def l2_normalize(data):
            r"""L2 normalization."""
            assert isinstance(data, torch.Tensor)
            import torch.nn.functional as F
            return F.normalize(data, dim=1)

        if op == 'to_tensor':
            return list_to_tensor, None
        elif op == 'decode_json':
            return decode_json_list, None
        elif op == 'decode_pkl':
            return decode_pkl_list, None
        elif op == 'to_numpy':
            return list_to_numpy, None
        elif op == 'l2_norm':
            return l2_normalize, None
        elif '::' in op:
            parts = op.split('::')
            if len(parts) == 2:
                module, function = parts
                module = importlib.import_module(module)
                function = getattr(module, function)
                sig = signature(function)
                num_params = len(sig.parameters)
                assert num_params in [3, 4], \
                    'Full data functions take in (cfgdata, is_inference, ' \
                    'full_data) or (cfgdata, is_inference, self, full_data) ' \
                    'as input.'
                if num_params == 3:
                    function = partial(
                        function, self.cfgdata, self.is_inference)
                elif num_params == 4:
                    function = partial(
                        function, self.cfgdata, self.is_inference, self)
                function_type = 'full_data'
            elif len(parts) == 3:
                function_type, module, function = parts
                module = importlib.import_module(module)

                # Get function inputs, if provided.
                partial_fn = False
                if '(' in function and ')' in function:
                    partial_fn = True
                    function, params = self._get_fn_params(function)

                function = getattr(module, function)

                # Create partial function.
                if partial_fn:
                    function = partial(function, **params)

                # Get function signature.
                sig = signature(function)
                num_params = 0
                for param in sig.parameters.values():
                    if param.kind == param.POSITIONAL_OR_KEYWORD:
                        num_params += 1

                if function_type == 'vis':
                    if num_params != 9:
                        raise ValueError(
                            'vis function type needs to take ' +
                            '(resize_h, resize_w, crop_h, crop_w, ' +
                            'original_h, original_w, is_flipped, cfgdata, ' +
                            'data) as input.')
                    function = partial(function,
                                       self.augmentor.resize_h,
                                       self.augmentor.resize_w,
                                       self.augmentor.crop_h,
                                       self.augmentor.crop_w,
                                       self.augmentor.original_h,
                                       self.augmentor.original_w,
                                       self.augmentor.is_flipped,
                                       self.cfgdata)
                elif function_type == 'convert':
                    if num_params != 1:
                        raise ValueError(
                            'convert function type needs to take ' +
                            '(data) as input.')
                else:
                    raise ValueError('Unknown op: %s' % (op))
            else:
                raise ValueError('Unknown op: %s' % (op))
            return function, function_type
        else:
            raise ValueError('Unknown op: %s' % (op))

    def _get_fn_params(self, function_string):
        r"""Find key-value inputs to function from string definition.

        Args:
            function_string (str): String with function name and args. e.g.
            my_function(a=10, b=20).
        Returns:
            function (str): Name of function.
            params (dict): Key-value params for function.
        """
        start = function_string.find('(')
        end = function_string.find(')')
        function = function_string[:start]
        params_str = function_string[start+1:end]
        params = {}
        for item in params_str.split(':'):
            key, value = item.split('=')
            try:
                params[key] = float(value)
            except:  # noqa
                params[key] = value
        return function, params

    def __len__(self):
        return self.epoch_length