import torch import torch.nn as nn from typing import Optional, Tuple from .siglip_config import SigLipConfig class SiglipTransformer(nn.Module): def __init__(self, config: SigLipConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SigLipEmbeddings(config) self.encoder = SiglipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: hidden_states = self.embeddings(pixel_values) last_hidden_state = self.encoder(inputs_embeds=hidden_states) last_hidden_state = self.post_layernorm(last_hidden_state) return last_hidden_state class SiglipEncoder(nn.Module): def __init__(self, config: SigLipConfig): super().__init__() self.config = config self.layers = nn.ModuleList( [SigLipEncoderLayer(config) for _ in range(config.num_hidden_layers)] ) def forward(self, inputs_embeds: torch.Tensor) -> torch.Tensor: hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states = encoder_layer(hidden_states) return hidden_states class SigLipEncoderLayer(nn.Module): def __init__(self, config: SigLipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = SigLipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SigLipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, _ = self.self_attn(hidden_states=hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class SigLipMLP(nn.Module): def __init__(self, config): super().__init__() self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = nn.functional.gelu(hidden_states, approximate="tanh") hidden_states = self.fc2(hidden_states) return hidden_states class SigLipAttention(nn.Module): def __init__(self, config): super().__init__() self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: batch_size, seq_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) attn_weights = (torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale) if attn_weights.size() != (batch_size, self.num_heads, seq_len, seq_len): raise ValueError( f"Attention weights should be of size {(batch_size, self.num_heads, seq_len, seq_len)}, but is" f" {attn_weights.size()}" ) attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (batch_size, self.num_heads, seq_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, seq_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class SigLipEmbeddings(nn.Module): def __init__(self, config: SigLipConfig): super().__init__() self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid" ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer( "position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False, ) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: patch_embeds = self.patch_embedding(pixel_values) embeddings = patch_embeds.flatten(2).transpose(1, 2) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings