vedikadesai commited on
Commit
820a550
·
verified ·
1 Parent(s): 07a01cd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
+ import torch
3
+ import gradio as gr
4
+
5
+ # Load pre-trained model and tokenizer
6
+ model_name = "borisn70/bert-43-multilabel-emotion-detection"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # Labels corresponding to different emotions
11
+ labels = [
12
+ 'admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion',
13
+ 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment',
14
+ 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism',
15
+ 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'
16
+ ]
17
+
18
+ # Function to predict emotions based on input text
19
+ def predict_emotions(text):
20
+ inputs = tokenizer(text, return_tensors="pt") # Tokenize the input text
21
+ with torch.no_grad():
22
+ logits = model(**inputs).logits # Get the model's output logits
23
+ probs = torch.sigmoid(logits)[0] # Apply sigmoid to get probabilities
24
+
25
+ # Filter results with probability > 0.5
26
+ results = {label: float(prob) for label, prob in zip(labels, probs) if prob > 0.5}
27
+ return results
28
+
29
+ # Set up Gradio interface
30
+ iface = gr.Interface(fn=predict_emotions, inputs="text", outputs="label")
31
+
32
+ # Launch the app
33
+ iface.launch()