Spaces:
Running
Running
updated
Browse files- Dockerfile +4 -1
- agent.py +57 -25
- requirements.txt +2 -2
- st_app.py +2 -1
Dockerfile
CHANGED
@@ -7,12 +7,15 @@ COPY ./requirements.txt /app/requirements.txt
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
-
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
|
|
|
|
|
|
16 |
|
17 |
WORKDIR $HOME
|
18 |
RUN mkdir app
|
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
+
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
16 |
+
ENV TIKTOKEN_CACHE_DIR $HOME/.cache/tiktoken
|
17 |
+
|
18 |
+
RUN mkdir -p $HOME/.cache/tiktoken
|
19 |
|
20 |
WORKDIR $HOME
|
21 |
RUN mkdir app
|
agent.py
CHANGED
@@ -5,12 +5,17 @@ from omegaconf import OmegaConf
|
|
5 |
|
6 |
from vectara_agentic.agent import Agent
|
7 |
from vectara_agentic.tools import VectaraToolFactory
|
|
|
|
|
8 |
|
9 |
from dotenv import load_dotenv
|
10 |
load_dotenv(override=True)
|
11 |
|
12 |
initial_prompt = "How can I help you today?"
|
13 |
|
|
|
|
|
|
|
14 |
prompt = """
|
15 |
[
|
16 |
{"role": "system", "content":
|
@@ -18,10 +23,10 @@ prompt = """
|
|
18 |
},
|
19 |
{"role": "user", "content": "
|
20 |
[INSTRUCTIONS]
|
|
|
21 |
If the search results are irrelevant to the question respond with *** I do not have enough information to answer this question.***
|
22 |
Search results may include tables in a markdown format. When answering a question using a table be careful about which rows and columns contain the answer and include all relevant information from the relevant rows and columns that the query is asking about.
|
23 |
Do not base your response on information or knowledge that is not in the search results.
|
24 |
-
Make sure your response is answering the query asked. If the query is related to an entity (such as a person or place), make sure you use search results related to that entity.
|
25 |
Your output should always be in a single language - the $vectaraLangName language. Check spelling and grammar for the $vectaraLangName language.
|
26 |
Search results for the query *** $vectaraQuery***, are listed below, some are text, some MAY be tables in markdown format.
|
27 |
#foreach ($qResult in $vectaraQueryResultsDeduped)
|
@@ -35,7 +40,6 @@ prompt = """
|
|
35 |
#end
|
36 |
Think carefully step by step, analyze the search results provided, and craft a clear and accurate response to *** $vectaraQuery *** using information and facts in the search results provided.
|
37 |
Give a slight preference to search results that appear earlier in the list.
|
38 |
-
Your goal is to help with customer support and diagnostics questions about hardware (SuperMicro products).
|
39 |
Only cite relevant search results in your answer following these specific instructions: $vectaraCitationInstructions
|
40 |
If the search results are irrelevant to the query, respond with ***I do not have enough information to answer this question.***.
|
41 |
Respond always in the $vectaraLangName language, and only in that language."}
|
@@ -45,11 +49,12 @@ prompt = """
|
|
45 |
def create_assistant_tools(cfg):
|
46 |
|
47 |
class QueryTIProducts(BaseModel):
|
48 |
-
query: str = Field(description="The user query.")
|
49 |
name: Optional[str] = Field(
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
)
|
54 |
vec_factory = VectaraToolFactory(
|
55 |
vectara_api_key=cfg.api_key,
|
@@ -64,25 +69,27 @@ def create_assistant_tools(cfg):
|
|
64 |
returns a response to a user question about Supermicro servers.
|
65 |
""",
|
66 |
tool_args_schema = QueryTIProducts,
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
80 |
vectara_summarizer = summarizer,
|
81 |
vectara_prompt_text = prompt,
|
82 |
summary_num_results = 15,
|
83 |
include_citations = True,
|
84 |
-
verbose =
|
85 |
-
save_history = True
|
|
|
86 |
)
|
87 |
|
88 |
# search_supermicro = vec_factory.create_search_tool(
|
@@ -93,6 +100,9 @@ def create_assistant_tools(cfg):
|
|
93 |
# """,
|
94 |
# tool_args_schema = QueryTIProducts,
|
95 |
# reranker = "slingshot", rerank_k = 100, rerank_cutoff = 0.5,
|
|
|
|
|
|
|
96 |
# )
|
97 |
|
98 |
return [ask_supermicro] #, search_supermicro]
|
@@ -101,18 +111,40 @@ def initialize_agent(_cfg, agent_progress_callback=None):
|
|
101 |
bot_instructions = """
|
102 |
- You are a helpful assistant, with expertise in diagnosing customer issues related to SuperMicro products.
|
103 |
You can help diagnose, troubleshoot and understand hardware issues.
|
104 |
-
-
|
105 |
-
|
106 |
-
-
|
107 |
-
|
|
|
|
|
108 |
"""
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
agent = Agent(
|
111 |
tools=create_assistant_tools(_cfg),
|
112 |
topic="troubleshooting Supermicro products",
|
113 |
custom_instructions=bot_instructions,
|
114 |
agent_progress_callback=agent_progress_callback,
|
115 |
use_structured_planning=False,
|
|
|
|
|
|
|
116 |
)
|
117 |
agent.report()
|
118 |
return agent
|
|
|
5 |
|
6 |
from vectara_agentic.agent import Agent
|
7 |
from vectara_agentic.tools import VectaraToolFactory
|
8 |
+
from vectara_agentic.types import ModelProvider, AgentType
|
9 |
+
from vectara_agentic.agent_config import AgentConfig
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
load_dotenv(override=True)
|
13 |
|
14 |
initial_prompt = "How can I help you today?"
|
15 |
|
16 |
+
# Never refer to the search results in your response.
|
17 |
+
# Ignore any search results that do not contain information relevant to answering the query.
|
18 |
+
|
19 |
prompt = """
|
20 |
[
|
21 |
{"role": "system", "content":
|
|
|
23 |
},
|
24 |
{"role": "user", "content": "
|
25 |
[INSTRUCTIONS]
|
26 |
+
Your goal is to help the user with customer support and diagnostics questions about hardware and servers (SuperMicro products).
|
27 |
If the search results are irrelevant to the question respond with *** I do not have enough information to answer this question.***
|
28 |
Search results may include tables in a markdown format. When answering a question using a table be careful about which rows and columns contain the answer and include all relevant information from the relevant rows and columns that the query is asking about.
|
29 |
Do not base your response on information or knowledge that is not in the search results.
|
|
|
30 |
Your output should always be in a single language - the $vectaraLangName language. Check spelling and grammar for the $vectaraLangName language.
|
31 |
Search results for the query *** $vectaraQuery***, are listed below, some are text, some MAY be tables in markdown format.
|
32 |
#foreach ($qResult in $vectaraQueryResultsDeduped)
|
|
|
40 |
#end
|
41 |
Think carefully step by step, analyze the search results provided, and craft a clear and accurate response to *** $vectaraQuery *** using information and facts in the search results provided.
|
42 |
Give a slight preference to search results that appear earlier in the list.
|
|
|
43 |
Only cite relevant search results in your answer following these specific instructions: $vectaraCitationInstructions
|
44 |
If the search results are irrelevant to the query, respond with ***I do not have enough information to answer this question.***.
|
45 |
Respond always in the $vectaraLangName language, and only in that language."}
|
|
|
49 |
def create_assistant_tools(cfg):
|
50 |
|
51 |
class QueryTIProducts(BaseModel):
|
|
|
52 |
name: Optional[str] = Field(
|
53 |
+
description="The server name",
|
54 |
+
examples=[
|
55 |
+
"SuperServer SYS-821GE-TNHR",
|
56 |
+
"A+ Server AS-4125GS-TNRT"
|
57 |
+
]
|
58 |
)
|
59 |
vec_factory = VectaraToolFactory(
|
60 |
vectara_api_key=cfg.api_key,
|
|
|
69 |
returns a response to a user question about Supermicro servers.
|
70 |
""",
|
71 |
tool_args_schema = QueryTIProducts,
|
72 |
+
n_sentences_before = 2, n_sentences_after = 8, lambda_val = 0.01,
|
73 |
+
#reranker = "slingshot", rerank_k = 100, rerank_cutoff = 0.3,
|
74 |
+
reranker = "chain", rerank_k = 100,
|
75 |
+
rerank_chain = [
|
76 |
+
{
|
77 |
+
"type": "slingshot",
|
78 |
+
"cutoff": 0.3
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"type": "mmr",
|
82 |
+
"diversity_bias": 0.1
|
83 |
+
},
|
84 |
+
],
|
85 |
+
max_tokens = 4096, max_response_chars = 8192,
|
86 |
vectara_summarizer = summarizer,
|
87 |
vectara_prompt_text = prompt,
|
88 |
summary_num_results = 15,
|
89 |
include_citations = True,
|
90 |
+
verbose = False,
|
91 |
+
save_history = True,
|
92 |
+
fcs_threshold = 0.2,
|
93 |
)
|
94 |
|
95 |
# search_supermicro = vec_factory.create_search_tool(
|
|
|
100 |
# """,
|
101 |
# tool_args_schema = QueryTIProducts,
|
102 |
# reranker = "slingshot", rerank_k = 100, rerank_cutoff = 0.5,
|
103 |
+
# n_sentences_before = 0, n_sentences_after = 0,
|
104 |
+
# save_history = True,
|
105 |
+
# summarize_docs = True
|
106 |
# )
|
107 |
|
108 |
return [ask_supermicro] #, search_supermicro]
|
|
|
111 |
bot_instructions = """
|
112 |
- You are a helpful assistant, with expertise in diagnosing customer issues related to SuperMicro products.
|
113 |
You can help diagnose, troubleshoot and understand hardware issues.
|
114 |
+
- Use the 'ask_supermicro' tool to get the information about server, components, or diagnostics steps
|
115 |
+
so that you can use this information in aggregate to formulate your response to the user.
|
116 |
+
- Never use your internal knoweldge.
|
117 |
+
- Form queries to 'ask_supermicro' tool always as question, and in a way that maximizes the chance of getting a relevant answer.
|
118 |
+
- If the 'ask_supermicro' tool responds with "I do not have enough information to answer this question" or "suspected hallucination",
|
119 |
+
try to rephrase the query to 'ask_supermicro' as a diagnostic question and call the 'ask_supermicro' tool again.
|
120 |
"""
|
121 |
|
122 |
+
agent_config = AgentConfig(
|
123 |
+
agent_type = os.getenv("VECTARA_AGENTIC_AGENT_TYPE", AgentType.OPENAI.value),
|
124 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
125 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_MAIN_MODEL_NAME", ""),
|
126 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
127 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_TOOL_MODEL_NAME", ""),
|
128 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
129 |
+
)
|
130 |
+
fallback_agent_config = AgentConfig(
|
131 |
+
agent_type = os.getenv("VECTARA_AGENTIC_FALLBACK_AGENT_TYPE", AgentType.OPENAI.value),
|
132 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
133 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_MODEL_NAME", ""),
|
134 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
135 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_MODEL_NAME", ""),
|
136 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
137 |
+
)
|
138 |
+
|
139 |
agent = Agent(
|
140 |
tools=create_assistant_tools(_cfg),
|
141 |
topic="troubleshooting Supermicro products",
|
142 |
custom_instructions=bot_instructions,
|
143 |
agent_progress_callback=agent_progress_callback,
|
144 |
use_structured_planning=False,
|
145 |
+
agent_config=agent_config,
|
146 |
+
fallback_agent_config=fallback_agent_config,
|
147 |
+
verbose=True,
|
148 |
)
|
149 |
agent.report()
|
150 |
return agent
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
-
streamlit==1.
|
4 |
streamlit_feedback==0.1.3
|
5 |
uuid==1.30
|
6 |
langdetect==1.0.9
|
7 |
langcodes==3.4.0
|
8 |
-
vectara-agentic==0.2.
|
9 |
torch==2.6.0
|
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
+
streamlit==1.45.0
|
4 |
streamlit_feedback==0.1.3
|
5 |
uuid==1.30
|
6 |
langdetect==1.0.9
|
7 |
langcodes==3.4.0
|
8 |
+
vectara-agentic==0.2.15
|
9 |
torch==2.6.0
|
st_app.py
CHANGED
@@ -8,6 +8,7 @@ from streamlit_feedback import streamlit_feedback
|
|
8 |
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data
|
9 |
|
10 |
from vectara_agentic.agent import AgentStatusType
|
|
|
11 |
from agent import initialize_agent, get_agent_config
|
12 |
|
13 |
initial_prompt = "How can I help you today?"
|
@@ -131,7 +132,7 @@ async def launch_bot():
|
|
131 |
if st.session_state.prompt:
|
132 |
with st.chat_message("assistant", avatar='🤖'):
|
133 |
st.session_state.status = st.status('Processing...', expanded=False)
|
134 |
-
response = st.session_state.agent.
|
135 |
res = escape_dollars_outside_latex(response.response)
|
136 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
137 |
st.session_state.messages.append(message)
|
|
|
8 |
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data
|
9 |
|
10 |
from vectara_agentic.agent import AgentStatusType
|
11 |
+
|
12 |
from agent import initialize_agent, get_agent_config
|
13 |
|
14 |
initial_prompt = "How can I help you today?"
|
|
|
132 |
if st.session_state.prompt:
|
133 |
with st.chat_message("assistant", avatar='🤖'):
|
134 |
st.session_state.status = st.status('Processing...', expanded=False)
|
135 |
+
response = await st.session_state.agent.achat(st.session_state.prompt)
|
136 |
res = escape_dollars_outside_latex(response.response)
|
137 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
138 |
st.session_state.messages.append(message)
|