updated
Browse files- Dockerfile +4 -1
- agent.py +22 -1
- requirements.txt +3 -3
- st_app.py +1 -1
Dockerfile
CHANGED
@@ -7,12 +7,15 @@ COPY ./requirements.txt /app/requirements.txt
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
-
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
|
|
|
|
|
|
16 |
|
17 |
WORKDIR $HOME
|
18 |
RUN mkdir app
|
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
+
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
16 |
+
ENV TIKTOKEN_CACHE_DIR $HOME/.cache/tiktoken
|
17 |
+
|
18 |
+
RUN mkdir -p $HOME/.cache/tiktoken
|
19 |
|
20 |
WORKDIR $HOME
|
21 |
RUN mkdir app
|
agent.py
CHANGED
@@ -5,6 +5,8 @@ from omegaconf import OmegaConf
|
|
5 |
|
6 |
from vectara_agentic.agent import Agent
|
7 |
from vectara_agentic.tools import VectaraToolFactory, ToolsFactory
|
|
|
|
|
8 |
|
9 |
from dotenv import load_dotenv
|
10 |
load_dotenv(override=True)
|
@@ -29,7 +31,6 @@ def create_assistant_tools(cfg):
|
|
29 |
return tickers
|
30 |
|
31 |
class QueryHMC(BaseModel):
|
32 |
-
query: str = Field(description="The user query.")
|
33 |
ticker: Optional[str] = Field(
|
34 |
default=None,
|
35 |
description="The company ticker.",
|
@@ -80,8 +81,10 @@ def create_assistant_tools(cfg):
|
|
80 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
81 |
vectara_summarizer = summarizer,
|
82 |
summary_num_results = 10,
|
|
|
83 |
include_citations = True,
|
84 |
verbose = True,
|
|
|
85 |
)
|
86 |
tools_factory = ToolsFactory()
|
87 |
return [ask_hmc] + [tools_factory.create_tool(get_company_info)]
|
@@ -95,6 +98,22 @@ def initialize_agent(_cfg, agent_progress_callback=None):
|
|
95 |
- Note that 10Q reports exist for quarters 1, 2, 3 and for the 4th quarter there is a 10K report.
|
96 |
- If the 'ask_hmc' tool does not return any results, check the year and ticker and try calling it again with the right values.
|
97 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
agent = Agent(
|
100 |
tools=create_assistant_tools(_cfg),
|
@@ -102,6 +121,8 @@ def initialize_agent(_cfg, agent_progress_callback=None):
|
|
102 |
custom_instructions=bot_instructions,
|
103 |
agent_progress_callback=agent_progress_callback,
|
104 |
verbose=True,
|
|
|
|
|
105 |
)
|
106 |
agent.report()
|
107 |
return agent
|
|
|
5 |
|
6 |
from vectara_agentic.agent import Agent
|
7 |
from vectara_agentic.tools import VectaraToolFactory, ToolsFactory
|
8 |
+
from vectara_agentic.agent_config import AgentConfig
|
9 |
+
from vectara_agentic.types import ModelProvider, AgentType
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
load_dotenv(override=True)
|
|
|
31 |
return tickers
|
32 |
|
33 |
class QueryHMC(BaseModel):
|
|
|
34 |
ticker: Optional[str] = Field(
|
35 |
default=None,
|
36 |
description="The company ticker.",
|
|
|
81 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
82 |
vectara_summarizer = summarizer,
|
83 |
summary_num_results = 10,
|
84 |
+
max_tokens = 4096, max_response_chars = 8192,
|
85 |
include_citations = True,
|
86 |
verbose = True,
|
87 |
+
save_history = True,
|
88 |
)
|
89 |
tools_factory = ToolsFactory()
|
90 |
return [ask_hmc] + [tools_factory.create_tool(get_company_info)]
|
|
|
98 |
- Note that 10Q reports exist for quarters 1, 2, 3 and for the 4th quarter there is a 10K report.
|
99 |
- If the 'ask_hmc' tool does not return any results, check the year and ticker and try calling it again with the right values.
|
100 |
"""
|
101 |
+
agent_config = AgentConfig(
|
102 |
+
agent_type = os.getenv("VECTARA_AGENTIC_AGENT_TYPE", AgentType.OPENAI.value),
|
103 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
104 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_MAIN_MODEL_NAME", ""),
|
105 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
106 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_TOOL_MODEL_NAME", ""),
|
107 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
108 |
+
)
|
109 |
+
fallback_agent_config = AgentConfig(
|
110 |
+
agent_type = os.getenv("VECTARA_AGENTIC_FALLBACK_AGENT_TYPE", AgentType.OPENAI.value),
|
111 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
112 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_MODEL_NAME", ""),
|
113 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
114 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_MODEL_NAME", ""),
|
115 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
116 |
+
)
|
117 |
|
118 |
agent = Agent(
|
119 |
tools=create_assistant_tools(_cfg),
|
|
|
121 |
custom_instructions=bot_instructions,
|
122 |
agent_progress_callback=agent_progress_callback,
|
123 |
verbose=True,
|
124 |
+
agent_config=agent_config,
|
125 |
+
fallback_agent_config=fallback_agent_config,
|
126 |
)
|
127 |
agent.report()
|
128 |
return agent
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
-
streamlit==1.
|
4 |
streamlit_feedback==0.1.3
|
5 |
uuid==1.30
|
6 |
langdetect==1.0.9
|
7 |
langcodes==3.4.0
|
8 |
-
vectara-agentic==0.2.
|
9 |
-
torch==2.6.0
|
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
+
streamlit==1.45.0
|
4 |
streamlit_feedback==0.1.3
|
5 |
uuid==1.30
|
6 |
langdetect==1.0.9
|
7 |
langcodes==3.4.0
|
8 |
+
vectara-agentic==0.2.15
|
9 |
+
torch==2.6.0
|
st_app.py
CHANGED
@@ -139,7 +139,7 @@ async def launch_bot():
|
|
139 |
if st.session_state.prompt:
|
140 |
with st.chat_message("assistant", avatar='🤖'):
|
141 |
st.session_state.status = st.status('Processing...', expanded=False)
|
142 |
-
response = st.session_state.agent.
|
143 |
res = escape_dollars_outside_latex(response.response)
|
144 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
145 |
st.session_state.messages.append(message)
|
|
|
139 |
if st.session_state.prompt:
|
140 |
with st.chat_message("assistant", avatar='🤖'):
|
141 |
st.session_state.status = st.status('Processing...', expanded=False)
|
142 |
+
response = await st.session_state.agent.achat(st.session_state.prompt)
|
143 |
res = escape_dollars_outside_latex(response.response)
|
144 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
145 |
st.session_state.messages.append(message)
|