Spaces:
Running
Running
File size: 1,213 Bytes
c679076 02c6d49 c679076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
from transformers import pipeline
# Load the model from Hugging Face
model_name = "dejanseo/CTR-ZD"
model_pipeline = pipeline("text-classification", model=model_name)
# Mapping for the labels
labels_mapping = {
"LABEL_0": "Neutral impact",
"LABEL_1": "Positive impact",
"LABEL_2": "Negative impact"
}
def predict_title_impact(query, title):
# Concatenate query and title
input_text = f"{query} {title}"
predictions = model_pipeline(input_text)
return predictions
# Streamlit app
st.title("HTML Title CTR Prediction")
st.write("Predict the likelihood of a HTML title having an impact on CTR (click-through rate).")
# Input for the query and HTML title
query = st.text_input("Enter the Query:")
title = st.text_input("Enter the HTML Title:")
# Predict button
if st.button("Predict"):
if query and title:
predictions = predict_title_impact(query, title)
for prediction in predictions:
label = labels_mapping.get(prediction['label'], "Unknown")
st.write(f"Prediction: {label}")
st.write(f"Confidence: {prediction['score']:.2f}")
else:
st.write("Please enter both a query and an HTML title.")
|