files added
Browse files- .gitignore +12 -0
- LICENSE +674 -0
- README.md +1 -10
- backend.py +101 -0
- cleanDataset.py +165 -0
- clean_openml.py +49 -0
- csv_merge_openai.py +133 -0
- generate_graphs.py +51 -0
- getDatasets.py +39 -0
- getFiles/getGithub.py +57 -0
- getFiles/getGoogle.py +119 -0
- getFiles/getHuggingFace.py +18 -0
- getFiles/getKaggle.py +19 -0
- getFiles/getSklearn.py +33 -0
- getLabels.py +97 -0
- langchain_folder/llm_helper.py +8 -0
- langchain_folder/main.py +14 -0
- openai_openml.py +48 -0
- openml_search.py +96 -0
- preprocessing/getNLP.py +25 -0
- preprocessing/getString.py +72 -0
- preprocessing/process.py +48 -0
- test.ipynb +1115 -0
- workflow.txt +377 -0
.gitignore
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/getFiles/kaggleApi.py
|
2 |
+
.env
|
3 |
+
test.py
|
4 |
+
langchain_folder/__pycache__
|
5 |
+
/downloads
|
6 |
+
lang_model.py
|
7 |
+
/final
|
8 |
+
__pycache__
|
9 |
+
getOpenml.py
|
10 |
+
/input_folder
|
11 |
+
/processed
|
12 |
+
/static
|
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
CHANGED
@@ -1,10 +1 @@
|
|
1 |
-
|
2 |
-
title: Dataset
|
3 |
-
emoji: 👀
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# DatasetCreator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_file
|
2 |
+
from flask_cors import CORS
|
3 |
+
import os
|
4 |
+
from langchain_folder.main import ReturnKeywordsfromPrompt
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import pandas as pd
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
app = Flask(__name__)
|
13 |
+
CORS(app)
|
14 |
+
|
15 |
+
CSV_FILE_PATH = os.getenv('file_path')
|
16 |
+
GRAPH_DIR = './static/graphs'
|
17 |
+
|
18 |
+
|
19 |
+
@app.route('/api/search', methods=['POST'])
|
20 |
+
def search():
|
21 |
+
data = request.get_json()
|
22 |
+
query = data.get('query', '')
|
23 |
+
keywords = ReturnKeywordsfromPrompt(query)
|
24 |
+
return jsonify({"status": "success", "queryReceived": query})
|
25 |
+
|
26 |
+
|
27 |
+
def generate_graphs_from_csv(csv_path, output_dir):
|
28 |
+
df = pd.read_csv(csv_path)
|
29 |
+
os.makedirs(output_dir, exist_ok=True)
|
30 |
+
|
31 |
+
numeric_cols = df.select_dtypes(include='number').columns.tolist()
|
32 |
+
categorical_cols = df.select_dtypes(include='object').columns.tolist()
|
33 |
+
graph_paths = []
|
34 |
+
print (categorical_cols)
|
35 |
+
|
36 |
+
if len(numeric_cols) >= 1:
|
37 |
+
plt.figure(figsize=(4, 3))
|
38 |
+
sns.histplot(df[numeric_cols[0]], kde=True)
|
39 |
+
plt.title(f'{numeric_cols[0]} Distribution')
|
40 |
+
plt.tight_layout()
|
41 |
+
path = f'{output_dir}/graph_1_hist.png'
|
42 |
+
plt.savefig(path)
|
43 |
+
graph_paths.append(path)
|
44 |
+
|
45 |
+
if len(numeric_cols) >= 2 and categorical_cols:
|
46 |
+
plt.figure(figsize=(4, 3))
|
47 |
+
sns.boxplot(data=df, x=categorical_cols[0], y=numeric_cols[1])
|
48 |
+
plt.title(f'{numeric_cols[1]} by {categorical_cols[0]}')
|
49 |
+
plt.tight_layout()
|
50 |
+
path = f'{output_dir}/graph_2_box.png'
|
51 |
+
plt.savefig(path)
|
52 |
+
graph_paths.append(path)
|
53 |
+
|
54 |
+
if categorical_cols:
|
55 |
+
plt.figure(figsize=(4, 3))
|
56 |
+
sns.countplot(data=df, x=categorical_cols[0])
|
57 |
+
plt.title(f'{categorical_cols[0]} Distribution')
|
58 |
+
plt.tight_layout()
|
59 |
+
path = f'{output_dir}/graph_3_count.png'
|
60 |
+
plt.savefig(path)
|
61 |
+
graph_paths.append(path)
|
62 |
+
|
63 |
+
if len(numeric_cols) >= 2:
|
64 |
+
plt.figure(figsize=(4, 3))
|
65 |
+
sns.scatterplot(data=df, x=numeric_cols[0], y=numeric_cols[1])
|
66 |
+
plt.title(f'{numeric_cols[0]} vs {numeric_cols[1]}')
|
67 |
+
plt.tight_layout()
|
68 |
+
path = f'{output_dir}/graph_4_scatter.png'
|
69 |
+
plt.savefig(path)
|
70 |
+
graph_paths.append(path)
|
71 |
+
|
72 |
+
return graph_paths
|
73 |
+
|
74 |
+
|
75 |
+
@app.route('/api/get_csv', methods=['GET'])
|
76 |
+
def get_csv():
|
77 |
+
try:
|
78 |
+
if not os.path.exists(CSV_FILE_PATH):
|
79 |
+
return jsonify({"error": "CSV file not found"}), 404
|
80 |
+
with open(CSV_FILE_PATH, "r", encoding="utf-8") as f:
|
81 |
+
return f.read(), 200, {
|
82 |
+
"Content-Type": "text/csv",
|
83 |
+
"Content-Disposition": "inline; filename=dataset.csv"
|
84 |
+
}
|
85 |
+
except Exception as e:
|
86 |
+
return jsonify({"error": str(e)}), 500
|
87 |
+
|
88 |
+
|
89 |
+
@app.route('/api/download_csv', methods=['GET'])
|
90 |
+
def download_csv():
|
91 |
+
return send_file(CSV_FILE_PATH, as_attachment=True)
|
92 |
+
|
93 |
+
|
94 |
+
@app.route('/api/get_graphs', methods=['GET'])
|
95 |
+
def get_graphs():
|
96 |
+
paths = generate_graphs_from_csv(CSV_FILE_PATH, GRAPH_DIR)
|
97 |
+
return jsonify({"graphs": [p.replace("./static", "/static") for p in paths]})
|
98 |
+
|
99 |
+
|
100 |
+
if __name__ == '__main__':
|
101 |
+
app.run(debug=True)
|
cleanDataset.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import glob
|
3 |
+
import re
|
4 |
+
from itertools import combinations
|
5 |
+
import os
|
6 |
+
from rapidfuzz import process, fuzz
|
7 |
+
import getLabels
|
8 |
+
|
9 |
+
|
10 |
+
def get_fuzzy_common_columns(cols_list, threshold=75):
|
11 |
+
"""
|
12 |
+
Given a list of sets of column names (normalized),
|
13 |
+
return the set of column names that are 'fuzzy common'
|
14 |
+
across all lists.
|
15 |
+
"""
|
16 |
+
# Start with columns from the first dataset
|
17 |
+
base = cols_list[0]
|
18 |
+
common = set()
|
19 |
+
|
20 |
+
for col in base:
|
21 |
+
match_all = True
|
22 |
+
for other in cols_list[1:]:
|
23 |
+
match, score, _ = process.extractOne(col, other, scorer=fuzz.token_sort_ratio)
|
24 |
+
if score < threshold:
|
25 |
+
match_all = False
|
26 |
+
break
|
27 |
+
if match_all:
|
28 |
+
common.add(col)
|
29 |
+
return common
|
30 |
+
|
31 |
+
|
32 |
+
def sortFiles(dfs):
|
33 |
+
unique_dfs = []
|
34 |
+
seen = []
|
35 |
+
|
36 |
+
for i, df1 in enumerate(dfs):
|
37 |
+
duplicate = False
|
38 |
+
for j in seen:
|
39 |
+
df2 = dfs[j]
|
40 |
+
|
41 |
+
# Check if same shape
|
42 |
+
if df1.shape != df2.shape:
|
43 |
+
continue
|
44 |
+
|
45 |
+
if df1.reset_index(drop=True).equals(df2.reset_index(drop=True)):
|
46 |
+
duplicate = True
|
47 |
+
break
|
48 |
+
|
49 |
+
if not duplicate:
|
50 |
+
unique_dfs.append(df1)
|
51 |
+
seen.append(i)
|
52 |
+
|
53 |
+
return unique_dfs
|
54 |
+
|
55 |
+
|
56 |
+
def normalize(col):
|
57 |
+
return re.sub(r'[^a-z0-9]', '', col.lower())
|
58 |
+
|
59 |
+
def clean(query):
|
60 |
+
os.makedirs("./final", exist_ok=True)
|
61 |
+
|
62 |
+
csv_files = glob.glob("downloads/"+query+"/*.csv")
|
63 |
+
if len(csv_files)<1:
|
64 |
+
print("No csv file found!!")
|
65 |
+
exit(0)
|
66 |
+
dfs=[]
|
67 |
+
skip=[]
|
68 |
+
for i,f in enumerate(csv_files):
|
69 |
+
try:
|
70 |
+
print(f"Reading {f}")
|
71 |
+
df = pd.read_csv(f)
|
72 |
+
dfs.append(df)
|
73 |
+
except Exception as e:
|
74 |
+
skip.append(i)
|
75 |
+
print(f"Failed to read {f}: {e}")
|
76 |
+
print(len(dfs))
|
77 |
+
dfs=sortFiles(dfs)
|
78 |
+
print(len(dfs))
|
79 |
+
|
80 |
+
labelList=getLabels.LabelsExtraction2(query,dfs,csv_files,skip)
|
81 |
+
print(labelList)
|
82 |
+
for i,df in enumerate(dfs):
|
83 |
+
if labelList[i] in df.columns:
|
84 |
+
df.rename(columns={labelList[i]:"label"},inplace=True)
|
85 |
+
|
86 |
+
# Step 2: Store normalized-to-original column mappings
|
87 |
+
normalized_cols = []
|
88 |
+
orig_col_maps = []
|
89 |
+
|
90 |
+
for df in dfs:
|
91 |
+
norm_to_orig = {}
|
92 |
+
norm_cols = []
|
93 |
+
for col in df.columns:
|
94 |
+
norm = normalize(col)
|
95 |
+
norm_cols.append(norm)
|
96 |
+
norm_to_orig[norm] = col
|
97 |
+
normalized_cols.append(set(norm_cols))
|
98 |
+
orig_col_maps.append(norm_to_orig)
|
99 |
+
|
100 |
+
# Step 3: Find combination with max common columns
|
101 |
+
max_common = set()
|
102 |
+
best_combo = []
|
103 |
+
|
104 |
+
for i in range(2, len(dfs) + 1):
|
105 |
+
for combo in combinations(range(len(dfs)), i):
|
106 |
+
selected_cols = [normalized_cols[j] for j in combo]
|
107 |
+
fuzzy_common = get_fuzzy_common_columns(selected_cols)
|
108 |
+
if len(fuzzy_common) >= len(max_common):
|
109 |
+
max_common = fuzzy_common
|
110 |
+
best_combo = combo
|
111 |
+
|
112 |
+
|
113 |
+
# Step 4: Harmonize columns and subset
|
114 |
+
aligned_dfs = []
|
115 |
+
|
116 |
+
for idx in best_combo:
|
117 |
+
df = dfs[idx]
|
118 |
+
original_cols = list(df.columns)
|
119 |
+
new_columns = {}
|
120 |
+
|
121 |
+
for std_col in max_common:
|
122 |
+
# Match this standard col to the most similar original column in this DataFrame
|
123 |
+
match, score, _ = process.extractOne(std_col, [normalize(col) for col in original_cols], scorer=fuzz.token_sort_ratio)
|
124 |
+
|
125 |
+
# Find the original column that corresponds to the matched normalized name
|
126 |
+
for col in original_cols:
|
127 |
+
if normalize(col) == match:
|
128 |
+
new_columns[col] = std_col # Map original -> standard
|
129 |
+
break
|
130 |
+
|
131 |
+
# Subset and rename
|
132 |
+
df_subset = df[list(new_columns.keys())].copy()
|
133 |
+
df_subset.rename(columns=new_columns, inplace=True)
|
134 |
+
aligned_dfs.append(df_subset)
|
135 |
+
|
136 |
+
# Step 5: Combine
|
137 |
+
combined_df = pd.concat(aligned_dfs, ignore_index=True)
|
138 |
+
print(best_combo)
|
139 |
+
# print(combined_df.head())
|
140 |
+
|
141 |
+
maxCount=0
|
142 |
+
idx=-1
|
143 |
+
for i in range(len(dfs)):
|
144 |
+
if dfs[i].index.size > maxCount:
|
145 |
+
maxCount=dfs[i].index.size
|
146 |
+
idx=i
|
147 |
+
|
148 |
+
flag=False
|
149 |
+
if maxCount>combined_df.index.size and len(dfs[idx].columns)>2:
|
150 |
+
# print("11")
|
151 |
+
flag=True
|
152 |
+
elif combined_df.index.size>maxCount and (len(dfs[idx].columns)-len(combined_df.columns))>3 and len(dfs[idx].columns)<7:
|
153 |
+
# print(len(dfs[idx].columns)-len(combined_df.columns))
|
154 |
+
flag=True
|
155 |
+
|
156 |
+
if flag:
|
157 |
+
dfs[idx].to_csv("./final/"+query+".csv", index=False)
|
158 |
+
print("The merge file was not upto the mark so saved a single file..."+str(idx))
|
159 |
+
else:
|
160 |
+
combined_df.to_csv("./final/"+query+".csv", index=False)
|
161 |
+
print("Saved Merged file...")
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
clean("twitter sentiment analysis")
|
clean_openml.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
def clean(user_prompt):
|
7 |
+
input_directory = os.path.join("input_folder", user_prompt)
|
8 |
+
output_directory = "downloads/"+user_prompt
|
9 |
+
|
10 |
+
# Create the output directory if it doesn't exist
|
11 |
+
os.makedirs(output_directory, exist_ok=True)
|
12 |
+
|
13 |
+
# Loop through all files in the user-specified input directory
|
14 |
+
for filename in os.listdir(input_directory):
|
15 |
+
file_path = os.path.join(input_directory, filename)
|
16 |
+
|
17 |
+
# Skip directories or hidden files
|
18 |
+
if os.path.isdir(file_path) or filename.startswith("."):
|
19 |
+
continue
|
20 |
+
|
21 |
+
# Output file path (.csv extension added)
|
22 |
+
output_file = os.path.join(output_directory, filename + ".csv")
|
23 |
+
|
24 |
+
with open(file_path, "r", encoding="utf-8", errors="ignore") as file:
|
25 |
+
lines = file.readlines()
|
26 |
+
|
27 |
+
headers = []
|
28 |
+
data_rows = []
|
29 |
+
data_started = False
|
30 |
+
|
31 |
+
for line in lines:
|
32 |
+
line = line.strip()
|
33 |
+
if line.startswith("@ATTRIBUTE"):
|
34 |
+
parts = line.split()
|
35 |
+
if len(parts) >= 2:
|
36 |
+
headers.append(parts[1])
|
37 |
+
elif line.startswith("@DATA"):
|
38 |
+
data_started = True
|
39 |
+
elif data_started and line:
|
40 |
+
data_rows.append(line.split(","))
|
41 |
+
|
42 |
+
# Write to CSV
|
43 |
+
with open(output_file, "w", newline="") as csvfile:
|
44 |
+
writer = csv.writer(csvfile)
|
45 |
+
writer.writerow(headers)
|
46 |
+
writer.writerows(data_rows)
|
47 |
+
|
48 |
+
print(f"✅ CSV file created for: {filename} → {output_file}")
|
49 |
+
|
csv_merge_openai.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# import pandas as pd
|
3 |
+
# from openai import OpenAI
|
4 |
+
# from dotenv import load_dotenv
|
5 |
+
|
6 |
+
# # Load environment variables
|
7 |
+
# load_dotenv()
|
8 |
+
|
9 |
+
# # Setup OpenAI client
|
10 |
+
# client = OpenAI(
|
11 |
+
# api_key=os.getenv("OPENAI_API_KEY"),
|
12 |
+
# base_url=os.getenv("OPENAI_API_BASE", "")
|
13 |
+
# )
|
14 |
+
|
15 |
+
# # Set the folder containing CSV files
|
16 |
+
# folder_path = 'house'
|
17 |
+
# csv_files = [f for f in os.listdir(folder_path) if f.endswith(".csv")]
|
18 |
+
|
19 |
+
# # Loop through each CSV file and process
|
20 |
+
# for file in csv_files:
|
21 |
+
# file_path = os.path.join(folder_path, file)
|
22 |
+
# try:
|
23 |
+
# df = pd.read_csv(file_path, nrows=1) # Read just the header row
|
24 |
+
# columns = df.columns.tolist()
|
25 |
+
# columns_str = ", ".join(columns)
|
26 |
+
|
27 |
+
# # Formulate prompt
|
28 |
+
# prompt = (
|
29 |
+
# f"The following are column labels from a dataset: {columns_str}.\n"
|
30 |
+
# "Among all the labels, return a list of labels which can be clubbed and merged into 1 label. Note that the lables which can be merged must belong to different datasets, do not merge lables of the same dataset"
|
31 |
+
# )
|
32 |
+
|
33 |
+
# # Ask OpenAI for insight
|
34 |
+
# response = client.chat.completions.create(
|
35 |
+
# model="gpt-4",
|
36 |
+
# messages=[
|
37 |
+
# {"role": "system", "content": "You are a helpful data analyst."},
|
38 |
+
# {"role": "user", "content": prompt}
|
39 |
+
# ],
|
40 |
+
# temperature=0.3
|
41 |
+
# )
|
42 |
+
|
43 |
+
# print(f"\n🔍 File: {file}")
|
44 |
+
# print("📋 Columns:", columns_str)
|
45 |
+
# print("💡 AI Insight:", response.choices[0].message.content)
|
46 |
+
|
47 |
+
# except Exception as e:
|
48 |
+
# print(f"❌ Error processing {file}: {e}")
|
49 |
+
|
50 |
+
import os
|
51 |
+
import json
|
52 |
+
import pandas as pd
|
53 |
+
from openai import OpenAI
|
54 |
+
from dotenv import load_dotenv
|
55 |
+
|
56 |
+
load_dotenv()
|
57 |
+
|
58 |
+
client = OpenAI(
|
59 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
60 |
+
base_url=os.getenv("OPENAI_API_BASE", "")
|
61 |
+
)
|
62 |
+
|
63 |
+
folder_path = 'downloads/house'
|
64 |
+
csv_files = [f for f in os.listdir(folder_path) if f.endswith(".csv")]
|
65 |
+
|
66 |
+
# Collect all column headers
|
67 |
+
all_columns = {}
|
68 |
+
for file in csv_files:
|
69 |
+
try:
|
70 |
+
df = pd.read_csv(os.path.join(folder_path, file), nrows=1)
|
71 |
+
all_columns[file] = df.columns.tolist()
|
72 |
+
except Exception as e:
|
73 |
+
print(f"❌ Could not read {file}: {e}")
|
74 |
+
|
75 |
+
flattened_cols = [f"{file}: {', '.join(cols)}" for file, cols in all_columns.items()]
|
76 |
+
prompt = (
|
77 |
+
"The following are column headers from multiple CSV datasets:\n\n"
|
78 |
+
+ f"{flattened_cols}"
|
79 |
+
+ "\n\nIdentify which labels across different datasets can be considered equivalent and merged. "
|
80 |
+
"Return only a valid JSON dictionary where keys are standard labels and values are lists of corresponding labels to rename. No explanation."
|
81 |
+
)
|
82 |
+
|
83 |
+
response = client.chat.completions.create(
|
84 |
+
model="gpt-4",
|
85 |
+
messages=[
|
86 |
+
{"role": "system", "content": "You are a helpful data analyst."},
|
87 |
+
{"role": "user", "content": prompt}
|
88 |
+
],
|
89 |
+
temperature=0.3
|
90 |
+
)
|
91 |
+
|
92 |
+
# Parse JSON dictionary
|
93 |
+
merge_map_text = response.choices[0].message.content.strip()
|
94 |
+
try:
|
95 |
+
start = merge_map_text.find("{")
|
96 |
+
end = merge_map_text.rfind("}") + 1
|
97 |
+
json_text = merge_map_text[start:end]
|
98 |
+
merge_map = json.loads(json_text)
|
99 |
+
print("\n🧠 Parsed Merge Map:")
|
100 |
+
print(json.dumps(merge_map, indent=2))
|
101 |
+
except Exception as e:
|
102 |
+
print("❌ Could not parse merge map from GPT:", e)
|
103 |
+
merge_map = {}
|
104 |
+
|
105 |
+
# Merge DataFrames
|
106 |
+
merged_df = pd.DataFrame()
|
107 |
+
|
108 |
+
for file in csv_files:
|
109 |
+
try:
|
110 |
+
df = pd.read_csv(os.path.join(folder_path, file), on_bad_lines='skip')
|
111 |
+
|
112 |
+
# Rename columns to standard labels
|
113 |
+
for standard_label, variants in merge_map.items():
|
114 |
+
for variant in variants:
|
115 |
+
if variant in df.columns:
|
116 |
+
df[standard_label] = df[variant]
|
117 |
+
|
118 |
+
# Retain only the standard columns we care about
|
119 |
+
df = df[list(set(df.columns) & set(merge_map.keys()))]
|
120 |
+
|
121 |
+
if not df.empty:
|
122 |
+
merged_df = pd.concat([merged_df, df], ignore_index=True)
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
print(f"❌ Error processing {file}: {e}")
|
126 |
+
|
127 |
+
# Final clean-up
|
128 |
+
if not merged_df.empty:
|
129 |
+
merged_df.drop_duplicates(inplace=True)
|
130 |
+
merged_df.to_csv("merged_cleaned_dataset.csv", index=False)
|
131 |
+
print("\n✅ Merged and cleaned dataset saved as 'merged_cleaned_dataset.csv'")
|
132 |
+
else:
|
133 |
+
print("⚠️ No data was merged. Check if the merge map matches the actual columns.")
|
generate_graphs.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import os
|
4 |
+
|
5 |
+
def generate_graphs(csv_path, output_dir):
|
6 |
+
df = pd.read_csv(csv_path)
|
7 |
+
|
8 |
+
os.makedirs(output_dir, exist_ok=True)
|
9 |
+
|
10 |
+
# Graph 1: Line plot of Open vs Close
|
11 |
+
plt.figure(figsize=(6, 4))
|
12 |
+
plt.plot(df['Open'], label='Open', color='blue')
|
13 |
+
plt.plot(df['Close'], label='Close', color='green')
|
14 |
+
plt.title('Open vs Close Price')
|
15 |
+
plt.xlabel('Index')
|
16 |
+
plt.ylabel('Price')
|
17 |
+
plt.legend()
|
18 |
+
plt.tight_layout()
|
19 |
+
plt.savefig(os.path.join(output_dir, 'open_close.png'))
|
20 |
+
plt.close()
|
21 |
+
|
22 |
+
# Graph 2: Scatter plot of RSI vs MACD
|
23 |
+
plt.figure(figsize=(6, 4))
|
24 |
+
plt.scatter(df['RSI'], df['MACD'], alpha=0.7, color='purple')
|
25 |
+
plt.title('RSI vs MACD')
|
26 |
+
plt.xlabel('RSI')
|
27 |
+
plt.ylabel('MACD')
|
28 |
+
plt.tight_layout()
|
29 |
+
plt.savefig(os.path.join(output_dir, 'rsi_macd.png'))
|
30 |
+
plt.close()
|
31 |
+
|
32 |
+
# Graph 3: Bar chart of average Volume (chunked)
|
33 |
+
volume_avg = df['Volume'].head(10) # Bar chart for first 10
|
34 |
+
plt.figure(figsize=(6, 4))
|
35 |
+
plt.bar(volume_avg.index, volume_avg.values, color='orange')
|
36 |
+
plt.title('Average Volume (First 10)')
|
37 |
+
plt.xlabel('Index')
|
38 |
+
plt.ylabel('Volume')
|
39 |
+
plt.tight_layout()
|
40 |
+
plt.savefig(os.path.join(output_dir, 'volume_bar.png'))
|
41 |
+
plt.close()
|
42 |
+
|
43 |
+
# Graph 4: Histogram of Target values
|
44 |
+
plt.figure(figsize=(6, 4))
|
45 |
+
plt.hist(df['Target'], bins=10, color='red', alpha=0.8)
|
46 |
+
plt.title('Distribution of Target')
|
47 |
+
plt.xlabel('Target Value')
|
48 |
+
plt.ylabel('Frequency')
|
49 |
+
plt.tight_layout()
|
50 |
+
plt.savefig(os.path.join(output_dir, 'target_hist.png'))
|
51 |
+
plt.close()
|
getDatasets.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import getFiles.getKaggle as getKaggle
|
4 |
+
import getFiles.getGoogle as getGoogle
|
5 |
+
import getFiles.getGithub as getGithub
|
6 |
+
import getFiles.getHuggingFace as gh
|
7 |
+
import cleanDataset
|
8 |
+
import openml_search
|
9 |
+
import clean_openml
|
10 |
+
|
11 |
+
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), 'langchain_folder')))
|
12 |
+
|
13 |
+
from langchain_folder import main as m
|
14 |
+
import json
|
15 |
+
|
16 |
+
def downloadDatasets():
|
17 |
+
data=input("enter query : ")
|
18 |
+
kag,git,hug=getGoogle.googleDatasets(data)
|
19 |
+
print(kag)
|
20 |
+
print("this is github : ")
|
21 |
+
print(git)
|
22 |
+
print(hug)
|
23 |
+
if(len(kag)>0):
|
24 |
+
for url in kag:
|
25 |
+
getKaggle.kaggleDataset(url,data)
|
26 |
+
if(len(git)>0):
|
27 |
+
for url in git:
|
28 |
+
getGithub.githubDataset(url,data)
|
29 |
+
if(len(hug)>0):
|
30 |
+
for url in hug:
|
31 |
+
gh.huggingDataset(url,data)
|
32 |
+
|
33 |
+
openml_search.openDataset(data)
|
34 |
+
clean_openml.clean(data)
|
35 |
+
|
36 |
+
|
37 |
+
cleanDataset.clean(data)
|
38 |
+
|
39 |
+
downloadDatasets()
|
getFiles/getGithub.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
from selenium import webdriver
|
4 |
+
from selenium.webdriver.common.by import By
|
5 |
+
from selenium.webdriver.chrome.options import Options
|
6 |
+
from selenium.webdriver.common.action_chains import ActionChains
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def githubDataset(url,query):
|
12 |
+
# time.sleep(3)
|
13 |
+
download_folder = os.path.abspath(f"./downloads/{query}")
|
14 |
+
os.makedirs(download_folder, exist_ok=True)
|
15 |
+
chrome_options = Options()
|
16 |
+
chrome_options.add_argument("--headless") # Uncomment to run headless (no UI)
|
17 |
+
chrome_options.add_experimental_option("prefs", {
|
18 |
+
"download.default_directory": download_folder, # Set the custom download folder
|
19 |
+
"download.prompt_for_download": False, # Don't ask for confirmation to download
|
20 |
+
"download.directory_upgrade": True, # Allow downloading into the custom folder
|
21 |
+
"safebrowsing.enabled": True # Enable safe browsing (to avoid warnings during download)
|
22 |
+
})
|
23 |
+
driver = webdriver.Chrome(options=chrome_options)
|
24 |
+
|
25 |
+
driver.get(url)
|
26 |
+
try:
|
27 |
+
csv_links = driver.find_elements(By.XPATH, "//a[contains(@href, '.csv')]")
|
28 |
+
for link in csv_links:
|
29 |
+
csv_file_name = link.text
|
30 |
+
if csv_file_name.endswith(".csv"):
|
31 |
+
print(f"Found CSV file: {csv_file_name}")
|
32 |
+
href=link.get_attribute("href")
|
33 |
+
# print("hello : "+href)
|
34 |
+
driver.get(href)
|
35 |
+
time.sleep(5)
|
36 |
+
|
37 |
+
download_button = driver.find_element(By.XPATH, "//button[contains(@class, 'Box-sc-g0xbh4-0 ivobqY prc-Button-ButtonBase-c50BI prc-Button-IconButton-szpyj')]")
|
38 |
+
href2=download_button.get_attribute("href")
|
39 |
+
if href2:
|
40 |
+
driver.get(href2)
|
41 |
+
print("Button clicked!!")
|
42 |
+
else:
|
43 |
+
download_button.click()
|
44 |
+
time.sleep(7)
|
45 |
+
break
|
46 |
+
else:
|
47 |
+
print("No CSV file found.")
|
48 |
+
except Exception as e:
|
49 |
+
print("No CSV File")
|
50 |
+
print(e)
|
51 |
+
finally:
|
52 |
+
driver.quit()
|
53 |
+
|
54 |
+
# print(f"CSV file should be downloaded to {download_folder}")
|
55 |
+
|
56 |
+
# githubDataset("https://github.com/ageron/handson-ml2/tree/master/datasets/housing","housing")
|
57 |
+
# githubDataset("https://github.com/nytimes/covid-19-data","housing")
|
getFiles/getGoogle.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from selenium import webdriver
|
3 |
+
from selenium.webdriver.common.by import By
|
4 |
+
from selenium.webdriver.common.keys import Keys
|
5 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
6 |
+
from selenium.webdriver.support import expected_conditions as EC
|
7 |
+
from selenium.webdriver.chrome.options import Options
|
8 |
+
import time
|
9 |
+
import getFiles.getKaggle as getKaggle
|
10 |
+
import getFiles.getGithub as getGithub
|
11 |
+
import os
|
12 |
+
|
13 |
+
times=15
|
14 |
+
|
15 |
+
|
16 |
+
def googleDatasets(query):
|
17 |
+
# query="Covid 19"
|
18 |
+
download_folder = "./downloads/"+query
|
19 |
+
kag=[]
|
20 |
+
git=[]
|
21 |
+
hug=[]
|
22 |
+
count=0
|
23 |
+
if not os.path.exists(download_folder):
|
24 |
+
os.makedirs(download_folder)
|
25 |
+
|
26 |
+
chrome_options = Options()
|
27 |
+
chrome_options.add_argument("--headless") # Uncomment to run headless (no UI)
|
28 |
+
chrome_options.add_experimental_option("prefs", {
|
29 |
+
"download.default_directory": download_folder, # Set the custom download folder
|
30 |
+
"download.prompt_for_download": False, # Don't ask for confirmation to download
|
31 |
+
"download.directory_upgrade": True, # Allow downloading into the custom folder
|
32 |
+
"safebrowsing.enabled": True # Enable safe browsing (to avoid warnings during download)
|
33 |
+
})
|
34 |
+
driver = webdriver.Chrome(options=chrome_options)
|
35 |
+
|
36 |
+
driver.get("https://datasetsearch.research.google.com/")
|
37 |
+
|
38 |
+
try:
|
39 |
+
WebDriverWait(driver, 20).until(
|
40 |
+
EC.presence_of_element_located((By.TAG_NAME, "c-wiz"))
|
41 |
+
)
|
42 |
+
|
43 |
+
search = WebDriverWait(driver, 20).until(
|
44 |
+
EC.element_to_be_clickable((By.CSS_SELECTOR, "input[aria-label='Dataset Search']"))
|
45 |
+
)
|
46 |
+
|
47 |
+
search.send_keys(query)
|
48 |
+
search.send_keys(Keys.RETURN)
|
49 |
+
|
50 |
+
WebDriverWait(driver, 10).until(
|
51 |
+
EC.presence_of_element_located((By.CSS_SELECTOR, "div[jscontroller]"))
|
52 |
+
)
|
53 |
+
|
54 |
+
WebDriverWait(driver,10).until(
|
55 |
+
EC.presence_of_element_located((By.TAG_NAME,"c-wiz"))
|
56 |
+
)
|
57 |
+
|
58 |
+
WebDriverWait(driver,10).until(
|
59 |
+
EC.presence_of_element_located((By.CSS_SELECTOR,"ol.VAt4"))
|
60 |
+
)
|
61 |
+
|
62 |
+
links=driver.find_elements(By.CSS_SELECTOR,"li.UnWQ5")
|
63 |
+
for link in links:
|
64 |
+
if count==times:
|
65 |
+
break
|
66 |
+
# print(link)
|
67 |
+
link.click()
|
68 |
+
time.sleep(2)
|
69 |
+
WebDriverWait(driver,10).until(
|
70 |
+
EC.presence_of_element_located((By.CSS_SELECTOR,"ul.eEUDce"))
|
71 |
+
)
|
72 |
+
|
73 |
+
downloads=driver.find_elements(By.CSS_SELECTOR,"li.dy4aPc")
|
74 |
+
dataset=downloads[0]
|
75 |
+
# dataset_url = dataset.get_attribute("href")
|
76 |
+
# print("Dataset URL:", dataset_url)
|
77 |
+
# print(dataset.get_attribute("href"))
|
78 |
+
tag=dataset.find_element(By.TAG_NAME,"a")
|
79 |
+
url=tag.get_attribute("href")
|
80 |
+
# print(url)
|
81 |
+
# print(driver.current_url)
|
82 |
+
try:
|
83 |
+
if "kaggle" in url:
|
84 |
+
match=re.search(r'datasets\/(.*)',url)
|
85 |
+
print(match)
|
86 |
+
string=match.group(1)
|
87 |
+
print("This is "+string)
|
88 |
+
kag.append(string)
|
89 |
+
# getKaggle.kaggleDataset(string,query)
|
90 |
+
# time.sleep(5)
|
91 |
+
continue
|
92 |
+
elif "github" in url:
|
93 |
+
print("This is "+url)
|
94 |
+
git.append(url)
|
95 |
+
# getGithub.githubDataset(url,query)
|
96 |
+
# time.sleep(5)
|
97 |
+
continue
|
98 |
+
elif "huggingface" in url and "turkish" not in url and "spanish" not in url:
|
99 |
+
match=re.search(r'datasets\/(.*)',url)
|
100 |
+
string=match.group(1)
|
101 |
+
print("Again "+string)
|
102 |
+
hug.append(string)
|
103 |
+
continue
|
104 |
+
except:
|
105 |
+
continue
|
106 |
+
dataset.click()
|
107 |
+
count+=1
|
108 |
+
time.sleep(5)
|
109 |
+
time.sleep(5)
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
print("Error:", e)
|
113 |
+
|
114 |
+
finally:
|
115 |
+
driver.quit()
|
116 |
+
|
117 |
+
return kag,git,hug
|
118 |
+
#
|
119 |
+
# googleDatasets("house predictions")
|
getFiles/getHuggingFace.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import os
|
3 |
+
|
4 |
+
def huggingDataset(url,query):
|
5 |
+
try:
|
6 |
+
# query="sentiment analysis"
|
7 |
+
# url="cornell-movie-review-data/rotten_tomatoes"
|
8 |
+
dataset = load_dataset(url)
|
9 |
+
print("Started downloading.....")
|
10 |
+
os.makedirs("./downloads/"+query,exist_ok=True)
|
11 |
+
|
12 |
+
dataset['train'].to_csv("./downloads/"+query+"/"+url[:5]+"train.csv")
|
13 |
+
dataset['test'].to_csv("./downloads/"+query+"/"+url[:5]+"test.csv")
|
14 |
+
except:
|
15 |
+
print("couldn't download hugging face dataset")
|
16 |
+
|
17 |
+
# huggingDataset("cornell-movie-review-data/rotten_tomatoes","sentiment analysis")
|
18 |
+
|
getFiles/getKaggle.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from kaggle.api.kaggle_api_extended import KaggleApi
|
3 |
+
import sys
|
4 |
+
|
5 |
+
|
6 |
+
# Initialize
|
7 |
+
api = KaggleApi()
|
8 |
+
api.authenticate()
|
9 |
+
|
10 |
+
# Download dataset to current dir
|
11 |
+
def kaggleDataset(url,query):
|
12 |
+
try:
|
13 |
+
print(f"{url} started downloading")
|
14 |
+
os.makedirs("./downloads/"+query, exist_ok=True)
|
15 |
+
api.dataset_download_files(url, path='./downloads/'+query, unzip=True)
|
16 |
+
except Exception as e:
|
17 |
+
print("Dataset not found")
|
18 |
+
|
19 |
+
# kaggleDataset('zynicide/wine-reviews')
|
getFiles/getSklearn.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import sklearn.datasets as skd
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
def sklearnDatasets(url,query):
|
7 |
+
try:
|
8 |
+
current_directory = os.getcwd()
|
9 |
+
downloads_folder = os.path.join(current_directory, query)
|
10 |
+
print(f"{url} started downloading")
|
11 |
+
os.makedirs(downloads_folder, exist_ok=True)
|
12 |
+
|
13 |
+
dataset_func = getattr(skd, url, None)
|
14 |
+
|
15 |
+
if dataset_func:
|
16 |
+
dataset = dataset_func(data_home=downloads_folder)
|
17 |
+
|
18 |
+
X, y = dataset.data, dataset.target
|
19 |
+
|
20 |
+
df = pd.DataFrame(X, columns=dataset.feature_names)
|
21 |
+
df['Target'] = y
|
22 |
+
|
23 |
+
csv_file_path = os.path.join(downloads_folder, f"{url}.csv")
|
24 |
+
df.to_csv(csv_file_path, index=False)
|
25 |
+
|
26 |
+
# print(f"Dataset '{url}' downloaded and saved to {csv_file_path}")
|
27 |
+
else:
|
28 |
+
print(f"Unknown dataset function: {url}. Please check the URL.")
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Dataset Not found")
|
31 |
+
|
32 |
+
|
33 |
+
# sklearnDatasets("fetch_california_housing")
|
getLabels.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from openai import OpenAI
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import google.generativeai as genai
|
6 |
+
import ast
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
def LabelsExtraction(query,dfs,csv_files,skip):
|
10 |
+
|
11 |
+
columnNames={}
|
12 |
+
j=0
|
13 |
+
for i,df in enumerate(dfs):
|
14 |
+
if j in skip:
|
15 |
+
j+=1
|
16 |
+
name=os.path.basename(csv_files[j]).lower()
|
17 |
+
columnNames[name]=df.columns
|
18 |
+
j+=1
|
19 |
+
|
20 |
+
|
21 |
+
# print(columnNames)
|
22 |
+
client = OpenAI(
|
23 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
24 |
+
base_url=os.getenv("OPENAI_API_BASE_URL", "")
|
25 |
+
)
|
26 |
+
prompt = (
|
27 |
+
"The following is a dictionary with key as name of csv file and value as array of their column headers:\n\n"
|
28 |
+
"Eg: {'21754539_dataset.csv': Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street','Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType','HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt'])}"
|
29 |
+
+ "The content in the Index([]) is the list of the headers"
|
30 |
+
+ f"{columnNames}"
|
31 |
+
+ "\n\nwith this info try to figure out which column in each file represents its label and also indentify if there is any file with no label"
|
32 |
+
"Return an array with column name that represents the label in that file and if there is no label return 0 in that place. Match the indexes as given in the dictionary, do not return any other content, just reutrn the array"
|
33 |
+
+ f"the labels which you will return must in context with this query {query}, so return the most relevant labels"
|
34 |
+
)
|
35 |
+
|
36 |
+
response = client.chat.completions.create(
|
37 |
+
model="gpt-4",
|
38 |
+
messages=[
|
39 |
+
{"role": "system", "content": "You are a helpful data analyst."},
|
40 |
+
{"role": "user", "content": prompt}
|
41 |
+
],
|
42 |
+
temperature=0.3
|
43 |
+
)
|
44 |
+
|
45 |
+
merge_map_text = response.choices[0].message.content.strip()
|
46 |
+
stripped=merge_map_text.split("```python")[1].replace("[","").replace("]","").replace("```","").split(",")
|
47 |
+
array=[str1.replace("\n","").strip() for str1 in stripped]
|
48 |
+
print(array)
|
49 |
+
arr2=[arr.strip("'") for arr in array]
|
50 |
+
print(arr2)
|
51 |
+
# print(arr2)
|
52 |
+
return arr2
|
53 |
+
|
54 |
+
|
55 |
+
def LabelsExtraction2(query,dfs,csv_files,skip):
|
56 |
+
|
57 |
+
columnNames={}
|
58 |
+
j=0
|
59 |
+
for i,df in enumerate(dfs):
|
60 |
+
if j in skip:
|
61 |
+
j+=1
|
62 |
+
name=os.path.basename(csv_files[j]).lower()
|
63 |
+
columnNames[name]=df.columns
|
64 |
+
j+=1
|
65 |
+
|
66 |
+
|
67 |
+
# print(columnNames)
|
68 |
+
prompt = (
|
69 |
+
"You are given a dictionary where each key is the name of a CSV file, and the value is an array (in pandas Index format) representing the column headers of that file.\n\n"
|
70 |
+
"Example format:\n"
|
71 |
+
"{'21754539_dataset.csv': Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street', 'Alley', "
|
72 |
+
"'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', "
|
73 |
+
"'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt'])}\n\n"
|
74 |
+
"Your task is to analyze this dictionary and, for each file, determine which column is most likely to represent the "
|
75 |
+
"**label** (i.e., the target variable) relevant to the following query:\n\n"
|
76 |
+
f"{query}\n\n"
|
77 |
+
"If you believe a file has **no clear label** based on the column names and the query, return **0** for that file.\n\n"
|
78 |
+
"Return your response as a **Python list**, maintaining the **same order as the keys in the input dictionary**. Each "
|
79 |
+
"entry in the list should be either:\n"
|
80 |
+
"- the column name (string) that most likely represents the label for that file, or\n"
|
81 |
+
"- the integer `0` if no label can be identified.\n\n"
|
82 |
+
"⚠️ Do not return any explanation, reasoning, or code. Only return the final list of labels, e.g.:\n"
|
83 |
+
"```python\n['SalePrice', 0, 'target_column_name']\n```\n\n"
|
84 |
+
"Now use the following data to generate your answer:\n"
|
85 |
+
f"{columnNames}"
|
86 |
+
)
|
87 |
+
|
88 |
+
genai.configure(api_key=os.getenv("gemini_api"))
|
89 |
+
|
90 |
+
model = genai.GenerativeModel("gemini-2.0-flash")
|
91 |
+
response = model.generate_content(prompt)
|
92 |
+
merge_map_text = response.text.strip()
|
93 |
+
print(merge_map_text)
|
94 |
+
str1=merge_map_text.replace("```","").replace("python","")
|
95 |
+
actual_list = ast.literal_eval(str1)
|
96 |
+
return actual_list
|
97 |
+
|
langchain_folder/llm_helper.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
import os
|
4 |
+
|
5 |
+
load_dotenv()
|
6 |
+
llm = ChatGroq(groq_api_key = os.getenv('groq_api'), model_name = "llama-3.1-8b-instant")
|
7 |
+
|
8 |
+
#llm = ChatGroq(groq_api_key = os.getenv('groq_deepseek_api'), model_name = "DeepSeek R1 Distill Llama 70B")
|
langchain_folder/main.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.prompts import PromptTemplate
|
2 |
+
from langchain_folder.llm_helper import llm
|
3 |
+
|
4 |
+
def ReturnKeywordsfromPrompt(query):
|
5 |
+
prompt = """You are a model and your job is the extract the keywords from the query which will be passed to you.
|
6 |
+
For Eg: If the query is -> Provide me with a combined dataset for house price prediction.
|
7 |
+
Your answer should be 'house price'. Do not return anything else, just the keywords, note that the queries can be for various datasets,
|
8 |
+
not jsut for house price prediction, go it?
|
9 |
+
Query: {query}"""
|
10 |
+
|
11 |
+
pt = PromptTemplate.from_template(prompt)
|
12 |
+
chain = pt | llm
|
13 |
+
response = chain.invoke({'query': query})
|
14 |
+
return response.content
|
openai_openml.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from selenium import webdriver
|
3 |
+
from selenium.webdriver.common.by import By
|
4 |
+
from selenium.webdriver.common.keys import Keys
|
5 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
6 |
+
from selenium.webdriver.support import expected_conditions as EC
|
7 |
+
from selenium.webdriver.chrome.options import Options
|
8 |
+
from selenium.webdriver.chrome.service import Service
|
9 |
+
import requests
|
10 |
+
import time
|
11 |
+
|
12 |
+
count=4
|
13 |
+
|
14 |
+
def openDataset(user_prompt):
|
15 |
+
chrome_options = Options()
|
16 |
+
chrome_options.add_argument("--headless") # Uncomment to run headless (no UI)
|
17 |
+
driver = webdriver.Chrome(options=chrome_options)
|
18 |
+
try:
|
19 |
+
driver.get('https://www.openml.org/search?type=data&status=active')
|
20 |
+
|
21 |
+
time.sleep(5)
|
22 |
+
|
23 |
+
search = WebDriverWait(driver, 20).until(
|
24 |
+
EC.presence_of_element_located((By.CSS_SELECTOR, "input.MuiInputBase-input.css-mnn31")))
|
25 |
+
search.send_keys(user_prompt)
|
26 |
+
search.send_keys(Keys.RETURN)
|
27 |
+
time.sleep(4)
|
28 |
+
|
29 |
+
divs = driver.find_elements(By.CSS_SELECTOR, "div.MuiPaper-root.MuiPaper-elevation.MuiPaper-elevation1.MuiCard-root.sc-gFAWRd.gJoEXx.css-1xol7fw")
|
30 |
+
a=0
|
31 |
+
urls=[]
|
32 |
+
for div in divs:
|
33 |
+
a+=1
|
34 |
+
if a>count:
|
35 |
+
break
|
36 |
+
div.click()
|
37 |
+
urls.append(driver.current_url)
|
38 |
+
# print(driver.current_url)
|
39 |
+
driver.back()
|
40 |
+
time.sleep(2)
|
41 |
+
|
42 |
+
driver.quit()
|
43 |
+
return urls
|
44 |
+
except:
|
45 |
+
print("Internet Issue driver crashed")
|
46 |
+
return []
|
47 |
+
|
48 |
+
# openDataset("stock price prediction")
|
openml_search.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openml
|
2 |
+
from langchain_core.prompts import PromptTemplate
|
3 |
+
from langchain_folder.llm_helper import llm
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
+
from selenium import webdriver
|
7 |
+
from selenium.webdriver.common.by import By
|
8 |
+
from selenium.webdriver.common.keys import Keys
|
9 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
10 |
+
from selenium.webdriver.support import expected_conditions as EC
|
11 |
+
from selenium.webdriver.chrome.options import Options
|
12 |
+
from selenium.webdriver.chrome.service import Service
|
13 |
+
import requests
|
14 |
+
import openai_openml as oo
|
15 |
+
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
url_list = []
|
19 |
+
api_key = os.getenv('openml_api')
|
20 |
+
openml.config.apikey = api_key
|
21 |
+
|
22 |
+
def extract_keywords(query):
|
23 |
+
prompt = PromptTemplate.from_template("""
|
24 |
+
You are an assistant whose job is to extract the keywords from the query and return it:
|
25 |
+
Query = "{query}"
|
26 |
+
For example, if the query is Generate a list of links to datasets related to house price prediction
|
27 |
+
your response should be -> "house price".
|
28 |
+
Note that the query might not always be related to house price predictions, it can be related to other things as well.
|
29 |
+
return only the keywords do not return anything else
|
30 |
+
""")
|
31 |
+
rendered_prompt = prompt.format(query=query)
|
32 |
+
response = llm.invoke(rendered_prompt)
|
33 |
+
return response.content
|
34 |
+
|
35 |
+
def fetch_dataset_urls(query, limit=4):
|
36 |
+
print(f"Searching for datasets related to: {query}")
|
37 |
+
# datasets = openml.datasets.list_datasets(output_format="dataframe")
|
38 |
+
# matching_datasets = datasets[datasets['name'].str.contains(query, case=False, na=False)]
|
39 |
+
# if matching_datasets.empty:
|
40 |
+
# keywords = query.lower().split()
|
41 |
+
# mask = datasets['name'].apply(lambda name: all(kw in str(name).lower() for kw in keywords))
|
42 |
+
# matching_datasets = datasets[mask]
|
43 |
+
|
44 |
+
# if matching_datasets.empty:
|
45 |
+
# print("No datasets found for the query.")
|
46 |
+
# else:
|
47 |
+
# matching_datasets = matching_datasets.head(limit)
|
48 |
+
# for index, row in matching_datasets.iterrows():
|
49 |
+
# print(f"📌 Dataset: {row['name']}")
|
50 |
+
# dataset_url = f"https://www.openml.org/d/{row['did']}"
|
51 |
+
# url_list.append(dataset_url)
|
52 |
+
# print(f"🔗 URL: https://www.openml.org/d/{row['did']}\n")
|
53 |
+
global url_list
|
54 |
+
url_list=oo.openDataset(query)
|
55 |
+
|
56 |
+
|
57 |
+
def openDataset(user_prompt):
|
58 |
+
# user_prompt = input("Enter user prompt: ")
|
59 |
+
extracted_keywords = extract_keywords(user_prompt)
|
60 |
+
print(extracted_keywords)
|
61 |
+
fetch_dataset_urls(extracted_keywords)
|
62 |
+
|
63 |
+
download_folder = "./input_folder/"+user_prompt
|
64 |
+
if not os.path.exists(download_folder):
|
65 |
+
os.makedirs(download_folder)
|
66 |
+
|
67 |
+
chrome_options = Options()
|
68 |
+
chrome_options.add_argument("--headless") # Uncomment to run headless (no UI)
|
69 |
+
chrome_options.add_experimental_option("prefs", {
|
70 |
+
"download.default_directory": download_folder, # Set the custom download folder
|
71 |
+
"download.prompt_for_download": False, # Don't ask for confirmation to download
|
72 |
+
"download.directory_upgrade": True, # Allow downloading into the custom folder
|
73 |
+
"safebrowsing.enabled": True # Enable safe browsing (to avoid warnings during download)
|
74 |
+
})
|
75 |
+
driver = webdriver.Chrome(options=chrome_options)
|
76 |
+
for url in url_list:
|
77 |
+
driver.get(url)
|
78 |
+
try:
|
79 |
+
download_button = WebDriverWait(driver, 10).until(
|
80 |
+
EC.presence_of_element_located((By.CSS_SELECTOR, "a[aria-label='Download dataset']"))
|
81 |
+
)
|
82 |
+
actual_download_url = download_button.get_attribute("href")
|
83 |
+
filename = actual_download_url.split("/")[-2] + "_" + actual_download_url.split("/")[-1]
|
84 |
+
file_path = os.path.join(download_folder, filename)
|
85 |
+
|
86 |
+
print(f"⬇️ Downloading from {actual_download_url}")
|
87 |
+
response = requests.get(actual_download_url)
|
88 |
+
with open(file_path, "wb") as f:
|
89 |
+
f.write(response.content)
|
90 |
+
print(f"✅ Saved to {file_path}\n")
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
print(f"❌ Failed to fetch or download from {url}: {e}")
|
94 |
+
|
95 |
+
# openDataset("stock market predictions")
|
96 |
+
|
preprocessing/getNLP.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
3 |
+
nlp=spacy.load("en_core_web_lg")
|
4 |
+
MAX_LENGTH=10
|
5 |
+
|
6 |
+
def preprocess_texts(texts):
|
7 |
+
sentence_vectors = []
|
8 |
+
|
9 |
+
# Use nlp.pipe() to process texts in batch (much faster)
|
10 |
+
for doc in nlp.pipe(texts, batch_size=1000):
|
11 |
+
vectors = [token.vector for token in doc if token.has_vector] # Extract word vectors
|
12 |
+
sentence_vectors.append(vectors)
|
13 |
+
|
14 |
+
# Pad all vectors to fixed length
|
15 |
+
return pad_sequences(sentence_vectors, maxlen=MAX_LENGTH, dtype='float32', padding='post', truncating='post')
|
16 |
+
|
17 |
+
def wordEmbed(df,columns):
|
18 |
+
for col in columns:
|
19 |
+
processed_array = preprocess_texts(df[col].tolist())
|
20 |
+
df["processed"+col] = [processed_array[i] for i in range(len(df))]
|
21 |
+
df.drop(columns=columns,inplace=True)
|
22 |
+
# print(df.head())
|
23 |
+
return df
|
24 |
+
|
25 |
+
|
preprocessing/getString.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import ast
|
4 |
+
import google.generativeai as genai
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
def extract_column_samples(df, n=5):
|
10 |
+
samples = {}
|
11 |
+
for col in df.columns:
|
12 |
+
samples[col] = df[col].head(n).tolist()
|
13 |
+
return samples
|
14 |
+
|
15 |
+
def getCodes(query):
|
16 |
+
# query = "covid 19"
|
17 |
+
path="final/"+query+".csv"
|
18 |
+
df = pd.read_csv(path)
|
19 |
+
|
20 |
+
samples = extract_column_samples(df)
|
21 |
+
|
22 |
+
prompt = (
|
23 |
+
"You are a data analyst. I will give you a dictionary containing column names with example values from a dataset.\n\n"
|
24 |
+
"Your task is to:\n"
|
25 |
+
"1. Identify columns where one-hot encoding is *not suitable*.\n"
|
26 |
+
"2. For each of these, determine if it requires:\n"
|
27 |
+
" - feature extraction (e.g., from datetime or strings), or\n"
|
28 |
+
" - use of word embeddings (e.g., for free text or high-cardinality text).\n\n"
|
29 |
+
"For feature extraction columns:\n"
|
30 |
+
"- Create a **Python dictionary** where:\n"
|
31 |
+
" * Each key is a new, meaningful column name.\n"
|
32 |
+
" * Each value is a **valid Pandas expression string** that derives the new column from the original `df` DataFrame.\n"
|
33 |
+
"- Also return a **Python list** of original column names that were used in this dictionary.\n\n"
|
34 |
+
"For columns requiring word embeddings:\n"
|
35 |
+
"- Return a separate **Python list** of these column names.\n"
|
36 |
+
"- If any column appears in both cases, include it *only* in the word embedding list.\n\n"
|
37 |
+
"Your output **must follow this exact format** with no additional explanation or markdown. Only return the following inside a single Python code block:\n"
|
38 |
+
"```python\n"
|
39 |
+
"# Dictionary of transformations\n"
|
40 |
+
"{'new_col1': \"some pandas expression\", 'new_col2': \"some other pandas expression\"}\n\n"
|
41 |
+
"# Array of columns used in the dictionary\n"
|
42 |
+
"['col1', 'col2']\n"
|
43 |
+
"# Array of columns that require the use of word embeddings\n"
|
44 |
+
"['col3', 'col4']\n"
|
45 |
+
"```\n\n"
|
46 |
+
"**DO NOT** include any explanation, reasoning, extra code, or markdown outside of the code block. Only return the exact format shown above. Do not generate or describe functions.\n\n"
|
47 |
+
f"Here is the input :\n{samples}\n"
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
genai.configure(api_key=os.getenv("gemini_api"))
|
52 |
+
|
53 |
+
model = genai.GenerativeModel("gemini-2.0-flash")
|
54 |
+
response = model.generate_content(prompt)
|
55 |
+
|
56 |
+
merge_map_text = response.text.strip()
|
57 |
+
print(merge_map_text)
|
58 |
+
|
59 |
+
str1 = merge_map_text.split("```python")[1].split("# Array of columns used in the dictionary")[0].strip()
|
60 |
+
str2 = merge_map_text.split("# Array of columns used in the dictionary")[1].split("# Array of columns that require the use of word embeddings")[0].strip()
|
61 |
+
str3 = merge_map_text.split("# Array of columns used in the dictionary")[1].split("# Array of columns that require the use of word embeddings")[1].replace("```","").strip()
|
62 |
+
|
63 |
+
preprocessing_code = ast.literal_eval(str1)
|
64 |
+
actual_list = ast.literal_eval(str2)
|
65 |
+
nlp=ast.literal_eval(str3)
|
66 |
+
# print("Parsed dict:\n", preprocessing_code)
|
67 |
+
# print("Columns changed:\n", actual_list)
|
68 |
+
# print("for nlp : ",nlp)
|
69 |
+
return preprocessing_code,actual_list,nlp
|
70 |
+
|
71 |
+
# getCodes(extract_column_samples)
|
72 |
+
|
preprocessing/process.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import getString
|
3 |
+
import getNLP
|
4 |
+
import os
|
5 |
+
|
6 |
+
def one_hot_encode_objects(df,nlp,columns):
|
7 |
+
object_cols = df.select_dtypes(include='object').columns
|
8 |
+
for col in object_cols:
|
9 |
+
if col not in nlp and col not in columns and "label" not in col:
|
10 |
+
if df[col].apply(lambda x: isinstance(x, (list, tuple, dict, set)) or hasattr(x, '__array__')).any():
|
11 |
+
print(f"Skipping column '{col}' due to unhashable values.")
|
12 |
+
continue
|
13 |
+
dummies = pd.get_dummies(df[col], prefix=col).astype(int)
|
14 |
+
df = pd.concat([df, dummies], axis=1)
|
15 |
+
df = df.drop(columns=[col])
|
16 |
+
print(df.columns)
|
17 |
+
return df
|
18 |
+
|
19 |
+
def fixEmpty(df):
|
20 |
+
df.replace(['undefined', 'null', 'NaN', 'None'], pd.NA, inplace=True)
|
21 |
+
for col in df.columns:
|
22 |
+
if df[col].dtype == 'object':
|
23 |
+
df[col] = df[col].fillna('Unknown')
|
24 |
+
else:
|
25 |
+
df[col] = df[col].fillna(df[col].mean())
|
26 |
+
|
27 |
+
return df
|
28 |
+
|
29 |
+
def preprocessing(query):
|
30 |
+
os.makedirs("./processed",exist_ok=True)
|
31 |
+
df=pd.read_csv("final/"+query+".csv")
|
32 |
+
# print(df.head())
|
33 |
+
df=fixEmpty(df)
|
34 |
+
preDict,col,nlp=getString.getCodes(query)
|
35 |
+
if len(col)>0:
|
36 |
+
for new_col, expr in preDict.items():
|
37 |
+
df[new_col] = eval(expr)
|
38 |
+
df.drop(columns=col, inplace=True)
|
39 |
+
if len(nlp)>0:
|
40 |
+
df=getNLP.wordEmbed(df,nlp)
|
41 |
+
# print(df.columns)
|
42 |
+
df=one_hot_encode_objects(df,nlp,col)
|
43 |
+
# df = df.astype('float32')
|
44 |
+
df.to_csv("./processed/"+query+".csv", index=False)
|
45 |
+
# print(df.head())
|
46 |
+
# print(df.info())
|
47 |
+
|
48 |
+
# preprocessing("twitter sentiment analysis")
|
test.ipynb
ADDED
@@ -0,0 +1,1115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "4b227ed2",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import glob\n",
|
12 |
+
"import re\n",
|
13 |
+
"# from collections import defaultdict\n",
|
14 |
+
"from itertools import combinations\n",
|
15 |
+
"import os"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 2,
|
21 |
+
"id": "9a976256",
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"query=\"house predictions\"\n",
|
26 |
+
"\n",
|
27 |
+
"\n",
|
28 |
+
"# Helper: Standardize column names\n",
|
29 |
+
"def normalize(col):\n",
|
30 |
+
" return re.sub(r'[^a-z0-9]', '', col.lower())\n",
|
31 |
+
"\n",
|
32 |
+
"# Step 1: Read CSVs\n",
|
33 |
+
"csv_files = glob.glob(\"downloads/covid 19/*.csv\")\n",
|
34 |
+
"dfs = [pd.read_csv(f) for f in csv_files]\n",
|
35 |
+
"\n",
|
36 |
+
"# Step 2: Store normalized-to-original column mappings\n",
|
37 |
+
"normalized_cols = []\n",
|
38 |
+
"orig_col_maps = []\n",
|
39 |
+
"\n",
|
40 |
+
"for df in dfs:\n",
|
41 |
+
" norm_to_orig = {}\n",
|
42 |
+
" norm_cols = []\n",
|
43 |
+
" for col in df.columns:\n",
|
44 |
+
" norm = normalize(col)\n",
|
45 |
+
" norm_cols.append(norm)\n",
|
46 |
+
" norm_to_orig[norm] = col\n",
|
47 |
+
" normalized_cols.append(set(norm_cols))\n",
|
48 |
+
" orig_col_maps.append(norm_to_orig)\n",
|
49 |
+
"\n",
|
50 |
+
"\n",
|
51 |
+
"# normalized_cols,orig_col_maps"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"id": "d82953b5",
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"from rapidfuzz import process, fuzz\n",
|
62 |
+
"\n",
|
63 |
+
"def get_fuzzy_common_columns(cols_list, threshold=85):\n",
|
64 |
+
" \"\"\"\n",
|
65 |
+
" Given a list of sets of column names (normalized),\n",
|
66 |
+
" return the set of column names that are 'fuzzy common'\n",
|
67 |
+
" across all lists.\n",
|
68 |
+
" \"\"\"\n",
|
69 |
+
" # Start with columns from the first dataset\n",
|
70 |
+
" base = cols_list[0]\n",
|
71 |
+
" common = set()\n",
|
72 |
+
"\n",
|
73 |
+
" for col in base:\n",
|
74 |
+
" match_all = True\n",
|
75 |
+
" for other in cols_list[1:]:\n",
|
76 |
+
" match, score, _ = process.extractOne(col, other, scorer=fuzz.token_sort_ratio)\n",
|
77 |
+
" if score < threshold:\n",
|
78 |
+
" match_all = False\n",
|
79 |
+
" break\n",
|
80 |
+
" if match_all:\n",
|
81 |
+
" common.add(col)\n",
|
82 |
+
" return common\n"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": null,
|
88 |
+
"id": "0eb8e3d5",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"name": "stdout",
|
93 |
+
"output_type": "stream",
|
94 |
+
"text": [
|
95 |
+
"[{'max', 'prcp', 'min', 'lat', 'long', 'temp', 'provincestate', 'dayfromjanfirst', 'date', 'wdsp', 'fog', 'fatalities', 'ah', 'stp', 'confirmedcases', 'countryregion', 'rh', 'slp', 'dewp', 'id'}, {'max', 'prcp', 'min', 'lat', 'long', 'temp', 'provincestate', 'dayfromjanfirst', 'date', 'wdsp', 'fog', 'fatalities', 'ah', 'stp', 'countryprovince', 'confirmedcases', 'countryregion', 'rh', 'slp', 'dewp', 'id'}]\n",
|
96 |
+
"[{'max', 'prcp', 'min', 'lat', 'long', 'temp', 'provincestate', 'dayfromjanfirst', 'date', 'wdsp', 'fog', 'fatalities', 'ah', 'stp', 'confirmedcases', 'countryregion', 'rh', 'slp', 'dewp', 'id'}, {'cumulativecases', 'datereported', 'newdeaths', 'countrycode', 'cumulativedeaths', 'whoregion', 'country', 'newcases'}]\n",
|
97 |
+
"[{'max', 'prcp', 'min', 'lat', 'long', 'temp', 'provincestate', 'dayfromjanfirst', 'date', 'wdsp', 'fog', 'fatalities', 'ah', 'stp', 'countryprovince', 'confirmedcases', 'countryregion', 'rh', 'slp', 'dewp', 'id'}, {'cumulativecases', 'datereported', 'newdeaths', 'countrycode', 'cumulativedeaths', 'whoregion', 'country', 'newcases'}]\n",
|
98 |
+
"[{'max', 'prcp', 'min', 'lat', 'long', 'temp', 'provincestate', 'dayfromjanfirst', 'date', 'wdsp', 'fog', 'fatalities', 'ah', 'stp', 'confirmedcases', 'countryregion', 'rh', 'slp', 'dewp', 'id'}, {'max', 'prcp', 'min', 'lat', 'long', 'temp', 'provincestate', 'dayfromjanfirst', 'date', 'wdsp', 'fog', 'fatalities', 'ah', 'stp', 'countryprovince', 'confirmedcases', 'countryregion', 'rh', 'slp', 'dewp', 'id'}, {'cumulativecases', 'datereported', 'newdeaths', 'countrycode', 'cumulativedeaths', 'whoregion', 'country', 'newcases'}]\n"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"data": {
|
103 |
+
"text/plain": [
|
104 |
+
"(set(), [])"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
"execution_count": 4,
|
108 |
+
"metadata": {},
|
109 |
+
"output_type": "execute_result"
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"source": [
|
113 |
+
"max_common = set()\n",
|
114 |
+
"best_combo = []\n",
|
115 |
+
"\n",
|
116 |
+
"for i in range(2, len(dfs) + 1):\n",
|
117 |
+
" for combo in combinations(range(len(dfs)), i):\n",
|
118 |
+
" common = set.intersection(*[normalized_cols[i] for i in combo])\n",
|
119 |
+
" # some=[normalized_cols[i] for i in combo]\n",
|
120 |
+
" # print(some)\n",
|
121 |
+
" if len(common) > len(max_common):\n",
|
122 |
+
" max_common = common\n",
|
123 |
+
" best_combo = combo\n",
|
124 |
+
"\n",
|
125 |
+
"max_common,best_combo"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 17,
|
131 |
+
"id": "b72d4152",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"aligned_dfs = []\n",
|
136 |
+
"for idx in best_combo:\n",
|
137 |
+
" df = dfs[idx]\n",
|
138 |
+
" norm_to_orig = orig_col_maps[idx]\n",
|
139 |
+
" selected_cols = [norm_to_orig[col] for col in max_common]\n",
|
140 |
+
" df_subset = df[selected_cols].copy()\n",
|
141 |
+
" df_subset.columns = [col for col in max_common] # unify column names\n",
|
142 |
+
" aligned_dfs.append(df_subset)\n",
|
143 |
+
"\n",
|
144 |
+
"# Step 5: Combine\n",
|
145 |
+
"combined_df = pd.concat(aligned_dfs, ignore_index=True)"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"id": "b0768203",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": []
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": 9,
|
159 |
+
"id": "f315dfad",
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [
|
162 |
+
{
|
163 |
+
"name": "stdout",
|
164 |
+
"output_type": "stream",
|
165 |
+
"text": [
|
166 |
+
"17892\n",
|
167 |
+
"24414\n",
|
168 |
+
"54960\n"
|
169 |
+
]
|
170 |
+
}
|
171 |
+
],
|
172 |
+
"source": [
|
173 |
+
"for df in dfs:\n",
|
174 |
+
" print(df.index.size)"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "code",
|
179 |
+
"execution_count": 11,
|
180 |
+
"id": "7972a696",
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"[17892, 24414]\n",
|
188 |
+
"[17892, 54960]\n",
|
189 |
+
"[24414, 54960]\n",
|
190 |
+
"[17892, 24414, 54960]\n"
|
191 |
+
]
|
192 |
+
}
|
193 |
+
],
|
194 |
+
"source": [
|
195 |
+
"for i in range(2, len(dfs) + 1):\n",
|
196 |
+
" for combo in combinations(range(len(dfs)), i):\n",
|
197 |
+
" counts=[dfs[i].index.size for i in combo]\n",
|
198 |
+
" print(counts)"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 12,
|
204 |
+
"id": "1a0f8006",
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [
|
207 |
+
{
|
208 |
+
"data": {
|
209 |
+
"text/plain": [
|
210 |
+
"(54960, 2)"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
"execution_count": 12,
|
214 |
+
"metadata": {},
|
215 |
+
"output_type": "execute_result"
|
216 |
+
}
|
217 |
+
],
|
218 |
+
"source": [
|
219 |
+
"maxCount=0\n",
|
220 |
+
"idx=-1\n",
|
221 |
+
"for i in range(len(dfs)):\n",
|
222 |
+
" if dfs[i].index.size > maxCount:\n",
|
223 |
+
" maxCount=dfs[i].index.size\n",
|
224 |
+
" idx=i\n",
|
225 |
+
"\n",
|
226 |
+
"maxCount,idx"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": 18,
|
232 |
+
"id": "240d4fd1",
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [
|
235 |
+
{
|
236 |
+
"data": {
|
237 |
+
"text/plain": [
|
238 |
+
"(42306, 54960)"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
"execution_count": 18,
|
242 |
+
"metadata": {},
|
243 |
+
"output_type": "execute_result"
|
244 |
+
}
|
245 |
+
],
|
246 |
+
"source": [
|
247 |
+
"combined_df.index.size,maxCount"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 20,
|
253 |
+
"id": "5eba3fe9",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"data": {
|
258 |
+
"text/plain": [
|
259 |
+
"'hello'"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
"execution_count": 20,
|
263 |
+
"metadata": {},
|
264 |
+
"output_type": "execute_result"
|
265 |
+
}
|
266 |
+
],
|
267 |
+
"source": [
|
268 |
+
"str=\"hello and \"\n",
|
269 |
+
"str[:5]"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 2,
|
275 |
+
"id": "94dac715",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [
|
278 |
+
{
|
279 |
+
"data": {
|
280 |
+
"text/html": [
|
281 |
+
"<div>\n",
|
282 |
+
"<style scoped>\n",
|
283 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
284 |
+
" vertical-align: middle;\n",
|
285 |
+
" }\n",
|
286 |
+
"\n",
|
287 |
+
" .dataframe tbody tr th {\n",
|
288 |
+
" vertical-align: top;\n",
|
289 |
+
" }\n",
|
290 |
+
"\n",
|
291 |
+
" .dataframe thead th {\n",
|
292 |
+
" text-align: right;\n",
|
293 |
+
" }\n",
|
294 |
+
"</style>\n",
|
295 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
296 |
+
" <thead>\n",
|
297 |
+
" <tr style=\"text-align: right;\">\n",
|
298 |
+
" <th></th>\n",
|
299 |
+
" <th>fixed acidity</th>\n",
|
300 |
+
" <th>volatile acidity</th>\n",
|
301 |
+
" <th>citric acid</th>\n",
|
302 |
+
" <th>residual sugar</th>\n",
|
303 |
+
" <th>chlorides</th>\n",
|
304 |
+
" <th>free sulfur dioxide</th>\n",
|
305 |
+
" <th>total sulfur dioxide</th>\n",
|
306 |
+
" <th>density</th>\n",
|
307 |
+
" <th>pH</th>\n",
|
308 |
+
" <th>sulphates</th>\n",
|
309 |
+
" <th>alcohol</th>\n",
|
310 |
+
" <th>quality</th>\n",
|
311 |
+
" </tr>\n",
|
312 |
+
" </thead>\n",
|
313 |
+
" <tbody>\n",
|
314 |
+
" <tr>\n",
|
315 |
+
" <th>0</th>\n",
|
316 |
+
" <td>7.4</td>\n",
|
317 |
+
" <td>0.70</td>\n",
|
318 |
+
" <td>0.00</td>\n",
|
319 |
+
" <td>1.9</td>\n",
|
320 |
+
" <td>0.076</td>\n",
|
321 |
+
" <td>11.0</td>\n",
|
322 |
+
" <td>34.0</td>\n",
|
323 |
+
" <td>0.9978</td>\n",
|
324 |
+
" <td>3.51</td>\n",
|
325 |
+
" <td>0.56</td>\n",
|
326 |
+
" <td>9.4</td>\n",
|
327 |
+
" <td>5</td>\n",
|
328 |
+
" </tr>\n",
|
329 |
+
" <tr>\n",
|
330 |
+
" <th>1</th>\n",
|
331 |
+
" <td>7.8</td>\n",
|
332 |
+
" <td>0.88</td>\n",
|
333 |
+
" <td>0.00</td>\n",
|
334 |
+
" <td>2.6</td>\n",
|
335 |
+
" <td>0.098</td>\n",
|
336 |
+
" <td>25.0</td>\n",
|
337 |
+
" <td>67.0</td>\n",
|
338 |
+
" <td>0.9968</td>\n",
|
339 |
+
" <td>3.20</td>\n",
|
340 |
+
" <td>0.68</td>\n",
|
341 |
+
" <td>9.8</td>\n",
|
342 |
+
" <td>5</td>\n",
|
343 |
+
" </tr>\n",
|
344 |
+
" <tr>\n",
|
345 |
+
" <th>2</th>\n",
|
346 |
+
" <td>7.8</td>\n",
|
347 |
+
" <td>0.76</td>\n",
|
348 |
+
" <td>0.04</td>\n",
|
349 |
+
" <td>2.3</td>\n",
|
350 |
+
" <td>0.092</td>\n",
|
351 |
+
" <td>15.0</td>\n",
|
352 |
+
" <td>54.0</td>\n",
|
353 |
+
" <td>0.9970</td>\n",
|
354 |
+
" <td>3.26</td>\n",
|
355 |
+
" <td>0.65</td>\n",
|
356 |
+
" <td>9.8</td>\n",
|
357 |
+
" <td>5</td>\n",
|
358 |
+
" </tr>\n",
|
359 |
+
" <tr>\n",
|
360 |
+
" <th>3</th>\n",
|
361 |
+
" <td>11.2</td>\n",
|
362 |
+
" <td>0.28</td>\n",
|
363 |
+
" <td>0.56</td>\n",
|
364 |
+
" <td>1.9</td>\n",
|
365 |
+
" <td>0.075</td>\n",
|
366 |
+
" <td>17.0</td>\n",
|
367 |
+
" <td>60.0</td>\n",
|
368 |
+
" <td>0.9980</td>\n",
|
369 |
+
" <td>3.16</td>\n",
|
370 |
+
" <td>0.58</td>\n",
|
371 |
+
" <td>9.8</td>\n",
|
372 |
+
" <td>6</td>\n",
|
373 |
+
" </tr>\n",
|
374 |
+
" <tr>\n",
|
375 |
+
" <th>4</th>\n",
|
376 |
+
" <td>7.4</td>\n",
|
377 |
+
" <td>0.70</td>\n",
|
378 |
+
" <td>0.00</td>\n",
|
379 |
+
" <td>1.9</td>\n",
|
380 |
+
" <td>0.076</td>\n",
|
381 |
+
" <td>11.0</td>\n",
|
382 |
+
" <td>34.0</td>\n",
|
383 |
+
" <td>0.9978</td>\n",
|
384 |
+
" <td>3.51</td>\n",
|
385 |
+
" <td>0.56</td>\n",
|
386 |
+
" <td>9.4</td>\n",
|
387 |
+
" <td>5</td>\n",
|
388 |
+
" </tr>\n",
|
389 |
+
" </tbody>\n",
|
390 |
+
"</table>\n",
|
391 |
+
"</div>"
|
392 |
+
],
|
393 |
+
"text/plain": [
|
394 |
+
" fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
|
395 |
+
"0 7.4 0.70 0.00 1.9 0.076 \n",
|
396 |
+
"1 7.8 0.88 0.00 2.6 0.098 \n",
|
397 |
+
"2 7.8 0.76 0.04 2.3 0.092 \n",
|
398 |
+
"3 11.2 0.28 0.56 1.9 0.075 \n",
|
399 |
+
"4 7.4 0.70 0.00 1.9 0.076 \n",
|
400 |
+
"\n",
|
401 |
+
" free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
|
402 |
+
"0 11.0 34.0 0.9978 3.51 0.56 \n",
|
403 |
+
"1 25.0 67.0 0.9968 3.20 0.68 \n",
|
404 |
+
"2 15.0 54.0 0.9970 3.26 0.65 \n",
|
405 |
+
"3 17.0 60.0 0.9980 3.16 0.58 \n",
|
406 |
+
"4 11.0 34.0 0.9978 3.51 0.56 \n",
|
407 |
+
"\n",
|
408 |
+
" alcohol quality \n",
|
409 |
+
"0 9.4 5 \n",
|
410 |
+
"1 9.8 5 \n",
|
411 |
+
"2 9.8 5 \n",
|
412 |
+
"3 9.8 6 \n",
|
413 |
+
"4 9.4 5 "
|
414 |
+
]
|
415 |
+
},
|
416 |
+
"execution_count": 2,
|
417 |
+
"metadata": {},
|
418 |
+
"output_type": "execute_result"
|
419 |
+
}
|
420 |
+
],
|
421 |
+
"source": [
|
422 |
+
"import pandas as pd\n",
|
423 |
+
"\n",
|
424 |
+
"df=pd.read_csv(\"downloads/wine quality prediction/redwine.csv\")\n",
|
425 |
+
"df.head()"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": 9,
|
431 |
+
"id": "d0947632",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [
|
434 |
+
{
|
435 |
+
"data": {
|
436 |
+
"text/plain": [
|
437 |
+
"'downloads/wine quality prediction\\\\redwine.csv'"
|
438 |
+
]
|
439 |
+
},
|
440 |
+
"execution_count": 9,
|
441 |
+
"metadata": {},
|
442 |
+
"output_type": "execute_result"
|
443 |
+
}
|
444 |
+
],
|
445 |
+
"source": [
|
446 |
+
"import glob\n",
|
447 |
+
"csv_files = glob.glob(\"downloads/\"+\"wine quality prediction\"+\"/*.csv\")\n",
|
448 |
+
"csv_files[0]"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"cell_type": "code",
|
453 |
+
"execution_count": 11,
|
454 |
+
"id": "22e2e148",
|
455 |
+
"metadata": {},
|
456 |
+
"outputs": [
|
457 |
+
{
|
458 |
+
"data": {
|
459 |
+
"text/html": [
|
460 |
+
"<div>\n",
|
461 |
+
"<style scoped>\n",
|
462 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
463 |
+
" vertical-align: middle;\n",
|
464 |
+
" }\n",
|
465 |
+
"\n",
|
466 |
+
" .dataframe tbody tr th {\n",
|
467 |
+
" vertical-align: top;\n",
|
468 |
+
" }\n",
|
469 |
+
"\n",
|
470 |
+
" .dataframe thead th {\n",
|
471 |
+
" text-align: right;\n",
|
472 |
+
" }\n",
|
473 |
+
"</style>\n",
|
474 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
475 |
+
" <thead>\n",
|
476 |
+
" <tr style=\"text-align: right;\">\n",
|
477 |
+
" <th></th>\n",
|
478 |
+
" <th>fixed acidity</th>\n",
|
479 |
+
" <th>volatile acidity</th>\n",
|
480 |
+
" <th>citric acid</th>\n",
|
481 |
+
" <th>residual sugar</th>\n",
|
482 |
+
" <th>chlorides</th>\n",
|
483 |
+
" <th>free sulfur dioxide</th>\n",
|
484 |
+
" <th>total sulfur dioxide</th>\n",
|
485 |
+
" <th>density</th>\n",
|
486 |
+
" <th>pH</th>\n",
|
487 |
+
" <th>sulphates</th>\n",
|
488 |
+
" <th>alcohol</th>\n",
|
489 |
+
" <th>quality</th>\n",
|
490 |
+
" </tr>\n",
|
491 |
+
" </thead>\n",
|
492 |
+
" <tbody>\n",
|
493 |
+
" <tr>\n",
|
494 |
+
" <th>0</th>\n",
|
495 |
+
" <td>7.4</td>\n",
|
496 |
+
" <td>0.70</td>\n",
|
497 |
+
" <td>0.00</td>\n",
|
498 |
+
" <td>1.9</td>\n",
|
499 |
+
" <td>0.076</td>\n",
|
500 |
+
" <td>11.0</td>\n",
|
501 |
+
" <td>34.0</td>\n",
|
502 |
+
" <td>0.9978</td>\n",
|
503 |
+
" <td>3.51</td>\n",
|
504 |
+
" <td>0.56</td>\n",
|
505 |
+
" <td>9.4</td>\n",
|
506 |
+
" <td>5</td>\n",
|
507 |
+
" </tr>\n",
|
508 |
+
" <tr>\n",
|
509 |
+
" <th>1</th>\n",
|
510 |
+
" <td>7.8</td>\n",
|
511 |
+
" <td>0.88</td>\n",
|
512 |
+
" <td>0.00</td>\n",
|
513 |
+
" <td>2.6</td>\n",
|
514 |
+
" <td>0.098</td>\n",
|
515 |
+
" <td>25.0</td>\n",
|
516 |
+
" <td>67.0</td>\n",
|
517 |
+
" <td>0.9968</td>\n",
|
518 |
+
" <td>3.20</td>\n",
|
519 |
+
" <td>0.68</td>\n",
|
520 |
+
" <td>9.8</td>\n",
|
521 |
+
" <td>5</td>\n",
|
522 |
+
" </tr>\n",
|
523 |
+
" <tr>\n",
|
524 |
+
" <th>2</th>\n",
|
525 |
+
" <td>7.8</td>\n",
|
526 |
+
" <td>0.76</td>\n",
|
527 |
+
" <td>0.04</td>\n",
|
528 |
+
" <td>2.3</td>\n",
|
529 |
+
" <td>0.092</td>\n",
|
530 |
+
" <td>15.0</td>\n",
|
531 |
+
" <td>54.0</td>\n",
|
532 |
+
" <td>0.9970</td>\n",
|
533 |
+
" <td>3.26</td>\n",
|
534 |
+
" <td>0.65</td>\n",
|
535 |
+
" <td>9.8</td>\n",
|
536 |
+
" <td>5</td>\n",
|
537 |
+
" </tr>\n",
|
538 |
+
" <tr>\n",
|
539 |
+
" <th>3</th>\n",
|
540 |
+
" <td>11.2</td>\n",
|
541 |
+
" <td>0.28</td>\n",
|
542 |
+
" <td>0.56</td>\n",
|
543 |
+
" <td>1.9</td>\n",
|
544 |
+
" <td>0.075</td>\n",
|
545 |
+
" <td>17.0</td>\n",
|
546 |
+
" <td>60.0</td>\n",
|
547 |
+
" <td>0.9980</td>\n",
|
548 |
+
" <td>3.16</td>\n",
|
549 |
+
" <td>0.58</td>\n",
|
550 |
+
" <td>9.8</td>\n",
|
551 |
+
" <td>6</td>\n",
|
552 |
+
" </tr>\n",
|
553 |
+
" <tr>\n",
|
554 |
+
" <th>4</th>\n",
|
555 |
+
" <td>7.4</td>\n",
|
556 |
+
" <td>0.70</td>\n",
|
557 |
+
" <td>0.00</td>\n",
|
558 |
+
" <td>1.9</td>\n",
|
559 |
+
" <td>0.076</td>\n",
|
560 |
+
" <td>11.0</td>\n",
|
561 |
+
" <td>34.0</td>\n",
|
562 |
+
" <td>0.9978</td>\n",
|
563 |
+
" <td>3.51</td>\n",
|
564 |
+
" <td>0.56</td>\n",
|
565 |
+
" <td>9.4</td>\n",
|
566 |
+
" <td>5</td>\n",
|
567 |
+
" </tr>\n",
|
568 |
+
" </tbody>\n",
|
569 |
+
"</table>\n",
|
570 |
+
"</div>"
|
571 |
+
],
|
572 |
+
"text/plain": [
|
573 |
+
" fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
|
574 |
+
"0 7.4 0.70 0.00 1.9 0.076 \n",
|
575 |
+
"1 7.8 0.88 0.00 2.6 0.098 \n",
|
576 |
+
"2 7.8 0.76 0.04 2.3 0.092 \n",
|
577 |
+
"3 11.2 0.28 0.56 1.9 0.075 \n",
|
578 |
+
"4 7.4 0.70 0.00 1.9 0.076 \n",
|
579 |
+
"\n",
|
580 |
+
" free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
|
581 |
+
"0 11.0 34.0 0.9978 3.51 0.56 \n",
|
582 |
+
"1 25.0 67.0 0.9968 3.20 0.68 \n",
|
583 |
+
"2 15.0 54.0 0.9970 3.26 0.65 \n",
|
584 |
+
"3 17.0 60.0 0.9980 3.16 0.58 \n",
|
585 |
+
"4 11.0 34.0 0.9978 3.51 0.56 \n",
|
586 |
+
"\n",
|
587 |
+
" alcohol quality \n",
|
588 |
+
"0 9.4 5 \n",
|
589 |
+
"1 9.8 5 \n",
|
590 |
+
"2 9.8 5 \n",
|
591 |
+
"3 9.8 6 \n",
|
592 |
+
"4 9.4 5 "
|
593 |
+
]
|
594 |
+
},
|
595 |
+
"execution_count": 11,
|
596 |
+
"metadata": {},
|
597 |
+
"output_type": "execute_result"
|
598 |
+
}
|
599 |
+
],
|
600 |
+
"source": [
|
601 |
+
"df=pd.read_csv(csv_files[0])\n",
|
602 |
+
"df.head()"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"cell_type": "code",
|
607 |
+
"execution_count": null,
|
608 |
+
"id": "1553de09",
|
609 |
+
"metadata": {},
|
610 |
+
"outputs": [
|
611 |
+
{
|
612 |
+
"data": {
|
613 |
+
"text/html": [
|
614 |
+
"<div>\n",
|
615 |
+
"<style scoped>\n",
|
616 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
617 |
+
" vertical-align: middle;\n",
|
618 |
+
" }\n",
|
619 |
+
"\n",
|
620 |
+
" .dataframe tbody tr th {\n",
|
621 |
+
" vertical-align: top;\n",
|
622 |
+
" }\n",
|
623 |
+
"\n",
|
624 |
+
" .dataframe thead th {\n",
|
625 |
+
" text-align: right;\n",
|
626 |
+
" }\n",
|
627 |
+
"</style>\n",
|
628 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
629 |
+
" <thead>\n",
|
630 |
+
" <tr style=\"text-align: right;\">\n",
|
631 |
+
" <th></th>\n",
|
632 |
+
" <th>fixed acidity</th>\n",
|
633 |
+
" <th>volatile acidity</th>\n",
|
634 |
+
" <th>citric acid</th>\n",
|
635 |
+
" <th>residual sugar</th>\n",
|
636 |
+
" <th>chlorides</th>\n",
|
637 |
+
" <th>free sulfur dioxide</th>\n",
|
638 |
+
" <th>total sulfur dioxide</th>\n",
|
639 |
+
" <th>density</th>\n",
|
640 |
+
" <th>pH</th>\n",
|
641 |
+
" <th>sulphates</th>\n",
|
642 |
+
" <th>alcohol</th>\n",
|
643 |
+
" <th>quality</th>\n",
|
644 |
+
" <th>label</th>\n",
|
645 |
+
" </tr>\n",
|
646 |
+
" </thead>\n",
|
647 |
+
" <tbody>\n",
|
648 |
+
" <tr>\n",
|
649 |
+
" <th>0</th>\n",
|
650 |
+
" <td>7.4</td>\n",
|
651 |
+
" <td>0.70</td>\n",
|
652 |
+
" <td>0.00</td>\n",
|
653 |
+
" <td>1.9</td>\n",
|
654 |
+
" <td>0.076</td>\n",
|
655 |
+
" <td>11.0</td>\n",
|
656 |
+
" <td>34.0</td>\n",
|
657 |
+
" <td>0.9978</td>\n",
|
658 |
+
" <td>3.51</td>\n",
|
659 |
+
" <td>0.56</td>\n",
|
660 |
+
" <td>9.4</td>\n",
|
661 |
+
" <td>5</td>\n",
|
662 |
+
" <td>red</td>\n",
|
663 |
+
" </tr>\n",
|
664 |
+
" <tr>\n",
|
665 |
+
" <th>1</th>\n",
|
666 |
+
" <td>7.8</td>\n",
|
667 |
+
" <td>0.88</td>\n",
|
668 |
+
" <td>0.00</td>\n",
|
669 |
+
" <td>2.6</td>\n",
|
670 |
+
" <td>0.098</td>\n",
|
671 |
+
" <td>25.0</td>\n",
|
672 |
+
" <td>67.0</td>\n",
|
673 |
+
" <td>0.9968</td>\n",
|
674 |
+
" <td>3.20</td>\n",
|
675 |
+
" <td>0.68</td>\n",
|
676 |
+
" <td>9.8</td>\n",
|
677 |
+
" <td>5</td>\n",
|
678 |
+
" <td>red</td>\n",
|
679 |
+
" </tr>\n",
|
680 |
+
" <tr>\n",
|
681 |
+
" <th>2</th>\n",
|
682 |
+
" <td>7.8</td>\n",
|
683 |
+
" <td>0.76</td>\n",
|
684 |
+
" <td>0.04</td>\n",
|
685 |
+
" <td>2.3</td>\n",
|
686 |
+
" <td>0.092</td>\n",
|
687 |
+
" <td>15.0</td>\n",
|
688 |
+
" <td>54.0</td>\n",
|
689 |
+
" <td>0.9970</td>\n",
|
690 |
+
" <td>3.26</td>\n",
|
691 |
+
" <td>0.65</td>\n",
|
692 |
+
" <td>9.8</td>\n",
|
693 |
+
" <td>5</td>\n",
|
694 |
+
" <td>red</td>\n",
|
695 |
+
" </tr>\n",
|
696 |
+
" <tr>\n",
|
697 |
+
" <th>3</th>\n",
|
698 |
+
" <td>11.2</td>\n",
|
699 |
+
" <td>0.28</td>\n",
|
700 |
+
" <td>0.56</td>\n",
|
701 |
+
" <td>1.9</td>\n",
|
702 |
+
" <td>0.075</td>\n",
|
703 |
+
" <td>17.0</td>\n",
|
704 |
+
" <td>60.0</td>\n",
|
705 |
+
" <td>0.9980</td>\n",
|
706 |
+
" <td>3.16</td>\n",
|
707 |
+
" <td>0.58</td>\n",
|
708 |
+
" <td>9.8</td>\n",
|
709 |
+
" <td>6</td>\n",
|
710 |
+
" <td>red</td>\n",
|
711 |
+
" </tr>\n",
|
712 |
+
" <tr>\n",
|
713 |
+
" <th>4</th>\n",
|
714 |
+
" <td>7.4</td>\n",
|
715 |
+
" <td>0.70</td>\n",
|
716 |
+
" <td>0.00</td>\n",
|
717 |
+
" <td>1.9</td>\n",
|
718 |
+
" <td>0.076</td>\n",
|
719 |
+
" <td>11.0</td>\n",
|
720 |
+
" <td>34.0</td>\n",
|
721 |
+
" <td>0.9978</td>\n",
|
722 |
+
" <td>3.51</td>\n",
|
723 |
+
" <td>0.56</td>\n",
|
724 |
+
" <td>9.4</td>\n",
|
725 |
+
" <td>5</td>\n",
|
726 |
+
" <td>red</td>\n",
|
727 |
+
" </tr>\n",
|
728 |
+
" </tbody>\n",
|
729 |
+
"</table>\n",
|
730 |
+
"</div>"
|
731 |
+
],
|
732 |
+
"text/plain": [
|
733 |
+
" fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
|
734 |
+
"0 7.4 0.70 0.00 1.9 0.076 \n",
|
735 |
+
"1 7.8 0.88 0.00 2.6 0.098 \n",
|
736 |
+
"2 7.8 0.76 0.04 2.3 0.092 \n",
|
737 |
+
"3 11.2 0.28 0.56 1.9 0.075 \n",
|
738 |
+
"4 7.4 0.70 0.00 1.9 0.076 \n",
|
739 |
+
"\n",
|
740 |
+
" free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
|
741 |
+
"0 11.0 34.0 0.9978 3.51 0.56 \n",
|
742 |
+
"1 25.0 67.0 0.9968 3.20 0.68 \n",
|
743 |
+
"2 15.0 54.0 0.9970 3.26 0.65 \n",
|
744 |
+
"3 17.0 60.0 0.9980 3.16 0.58 \n",
|
745 |
+
"4 11.0 34.0 0.9978 3.51 0.56 \n",
|
746 |
+
"\n",
|
747 |
+
" alcohol quality label \n",
|
748 |
+
"0 9.4 5 red \n",
|
749 |
+
"1 9.8 5 red \n",
|
750 |
+
"2 9.8 5 red \n",
|
751 |
+
"3 9.8 6 red \n",
|
752 |
+
"4 9.4 5 red "
|
753 |
+
]
|
754 |
+
},
|
755 |
+
"execution_count": 14,
|
756 |
+
"metadata": {},
|
757 |
+
"output_type": "execute_result"
|
758 |
+
}
|
759 |
+
],
|
760 |
+
"source": [
|
761 |
+
"import os\n",
|
762 |
+
"newName=os.path.basename(csv_files[0]).lower().split(\".\")[0]\n",
|
763 |
+
"query=\"wine quality prediction\"\n",
|
764 |
+
"\n",
|
765 |
+
"words=set(query.lower().split())\n",
|
766 |
+
"\n",
|
767 |
+
"for word in words:\n",
|
768 |
+
" if word in newName:\n",
|
769 |
+
" newName=newName.replace(word,\"\")\n",
|
770 |
+
"\n",
|
771 |
+
"df['label']=newName\n",
|
772 |
+
"\n",
|
773 |
+
"df.head()"
|
774 |
+
]
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"cell_type": "code",
|
778 |
+
"execution_count": 2,
|
779 |
+
"id": "8c258b22",
|
780 |
+
"metadata": {},
|
781 |
+
"outputs": [
|
782 |
+
{
|
783 |
+
"data": {
|
784 |
+
"text/html": [
|
785 |
+
"<div>\n",
|
786 |
+
"<style scoped>\n",
|
787 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
788 |
+
" vertical-align: middle;\n",
|
789 |
+
" }\n",
|
790 |
+
"\n",
|
791 |
+
" .dataframe tbody tr th {\n",
|
792 |
+
" vertical-align: top;\n",
|
793 |
+
" }\n",
|
794 |
+
"\n",
|
795 |
+
" .dataframe thead th {\n",
|
796 |
+
" text-align: right;\n",
|
797 |
+
" }\n",
|
798 |
+
"</style>\n",
|
799 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
800 |
+
" <thead>\n",
|
801 |
+
" <tr style=\"text-align: right;\">\n",
|
802 |
+
" <th></th>\n",
|
803 |
+
" <th>Date_reported</th>\n",
|
804 |
+
" <th>Country_code</th>\n",
|
805 |
+
" <th>Country</th>\n",
|
806 |
+
" <th>WHO_region</th>\n",
|
807 |
+
" <th>New_cases</th>\n",
|
808 |
+
" <th>Cumulative_cases</th>\n",
|
809 |
+
" <th>New_deaths</th>\n",
|
810 |
+
" <th>Cumulative_deaths</th>\n",
|
811 |
+
" </tr>\n",
|
812 |
+
" </thead>\n",
|
813 |
+
" <tbody>\n",
|
814 |
+
" <tr>\n",
|
815 |
+
" <th>0</th>\n",
|
816 |
+
" <td>2020-01-05</td>\n",
|
817 |
+
" <td>AF</td>\n",
|
818 |
+
" <td>Afghanistan</td>\n",
|
819 |
+
" <td>EMRO</td>\n",
|
820 |
+
" <td>NaN</td>\n",
|
821 |
+
" <td>0</td>\n",
|
822 |
+
" <td>NaN</td>\n",
|
823 |
+
" <td>0</td>\n",
|
824 |
+
" </tr>\n",
|
825 |
+
" <tr>\n",
|
826 |
+
" <th>1</th>\n",
|
827 |
+
" <td>2020-01-12</td>\n",
|
828 |
+
" <td>AF</td>\n",
|
829 |
+
" <td>Afghanistan</td>\n",
|
830 |
+
" <td>EMRO</td>\n",
|
831 |
+
" <td>NaN</td>\n",
|
832 |
+
" <td>0</td>\n",
|
833 |
+
" <td>NaN</td>\n",
|
834 |
+
" <td>0</td>\n",
|
835 |
+
" </tr>\n",
|
836 |
+
" <tr>\n",
|
837 |
+
" <th>2</th>\n",
|
838 |
+
" <td>2020-01-19</td>\n",
|
839 |
+
" <td>AF</td>\n",
|
840 |
+
" <td>Afghanistan</td>\n",
|
841 |
+
" <td>EMRO</td>\n",
|
842 |
+
" <td>NaN</td>\n",
|
843 |
+
" <td>0</td>\n",
|
844 |
+
" <td>NaN</td>\n",
|
845 |
+
" <td>0</td>\n",
|
846 |
+
" </tr>\n",
|
847 |
+
" <tr>\n",
|
848 |
+
" <th>3</th>\n",
|
849 |
+
" <td>2020-01-26</td>\n",
|
850 |
+
" <td>AF</td>\n",
|
851 |
+
" <td>Afghanistan</td>\n",
|
852 |
+
" <td>EMRO</td>\n",
|
853 |
+
" <td>NaN</td>\n",
|
854 |
+
" <td>0</td>\n",
|
855 |
+
" <td>NaN</td>\n",
|
856 |
+
" <td>0</td>\n",
|
857 |
+
" </tr>\n",
|
858 |
+
" <tr>\n",
|
859 |
+
" <th>4</th>\n",
|
860 |
+
" <td>2020-02-02</td>\n",
|
861 |
+
" <td>AF</td>\n",
|
862 |
+
" <td>Afghanistan</td>\n",
|
863 |
+
" <td>EMRO</td>\n",
|
864 |
+
" <td>NaN</td>\n",
|
865 |
+
" <td>0</td>\n",
|
866 |
+
" <td>NaN</td>\n",
|
867 |
+
" <td>0</td>\n",
|
868 |
+
" </tr>\n",
|
869 |
+
" </tbody>\n",
|
870 |
+
"</table>\n",
|
871 |
+
"</div>"
|
872 |
+
],
|
873 |
+
"text/plain": [
|
874 |
+
" Date_reported Country_code Country WHO_region New_cases \\\n",
|
875 |
+
"0 2020-01-05 AF Afghanistan EMRO NaN \n",
|
876 |
+
"1 2020-01-12 AF Afghanistan EMRO NaN \n",
|
877 |
+
"2 2020-01-19 AF Afghanistan EMRO NaN \n",
|
878 |
+
"3 2020-01-26 AF Afghanistan EMRO NaN \n",
|
879 |
+
"4 2020-02-02 AF Afghanistan EMRO NaN \n",
|
880 |
+
"\n",
|
881 |
+
" Cumulative_cases New_deaths Cumulative_deaths \n",
|
882 |
+
"0 0 NaN 0 \n",
|
883 |
+
"1 0 NaN 0 \n",
|
884 |
+
"2 0 NaN 0 \n",
|
885 |
+
"3 0 NaN 0 \n",
|
886 |
+
"4 0 NaN 0 "
|
887 |
+
]
|
888 |
+
},
|
889 |
+
"execution_count": 2,
|
890 |
+
"metadata": {},
|
891 |
+
"output_type": "execute_result"
|
892 |
+
}
|
893 |
+
],
|
894 |
+
"source": [
|
895 |
+
"import pandas as pd\n",
|
896 |
+
"\n",
|
897 |
+
"df=pd.read_csv(\"final/covid 19.csv\")\n",
|
898 |
+
"df.head()"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"cell_type": "code",
|
903 |
+
"execution_count": 3,
|
904 |
+
"id": "6b43c357",
|
905 |
+
"metadata": {},
|
906 |
+
"outputs": [
|
907 |
+
{
|
908 |
+
"name": "stdout",
|
909 |
+
"output_type": "stream",
|
910 |
+
"text": [
|
911 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
912 |
+
"RangeIndex: 54960 entries, 0 to 54959\n",
|
913 |
+
"Data columns (total 8 columns):\n",
|
914 |
+
" # Column Non-Null Count Dtype \n",
|
915 |
+
"--- ------ -------------- ----- \n",
|
916 |
+
" 0 Date_reported 54960 non-null object \n",
|
917 |
+
" 1 Country_code 54731 non-null object \n",
|
918 |
+
" 2 Country 54960 non-null object \n",
|
919 |
+
" 3 WHO_region 50838 non-null object \n",
|
920 |
+
" 4 New_cases 38082 non-null float64\n",
|
921 |
+
" 5 Cumulative_cases 54960 non-null int64 \n",
|
922 |
+
" 6 New_deaths 24747 non-null float64\n",
|
923 |
+
" 7 Cumulative_deaths 54960 non-null int64 \n",
|
924 |
+
"dtypes: float64(2), int64(2), object(4)\n",
|
925 |
+
"memory usage: 3.4+ MB\n"
|
926 |
+
]
|
927 |
+
}
|
928 |
+
],
|
929 |
+
"source": [
|
930 |
+
"df.info()"
|
931 |
+
]
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"cell_type": "code",
|
935 |
+
"execution_count": 4,
|
936 |
+
"id": "ab7a92d8",
|
937 |
+
"metadata": {},
|
938 |
+
"outputs": [
|
939 |
+
{
|
940 |
+
"data": {
|
941 |
+
"text/plain": [
|
942 |
+
"['Date_reported', 'Country_code', 'Country', 'WHO_region']"
|
943 |
+
]
|
944 |
+
},
|
945 |
+
"execution_count": 4,
|
946 |
+
"metadata": {},
|
947 |
+
"output_type": "execute_result"
|
948 |
+
}
|
949 |
+
],
|
950 |
+
"source": [
|
951 |
+
"object_columns = df.dtypes[df.dtypes == 'object'].index.tolist()\n",
|
952 |
+
"object_columns"
|
953 |
+
]
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"cell_type": "code",
|
957 |
+
"execution_count": 5,
|
958 |
+
"id": "ae0b8edb",
|
959 |
+
"metadata": {},
|
960 |
+
"outputs": [
|
961 |
+
{
|
962 |
+
"name": "stdout",
|
963 |
+
"output_type": "stream",
|
964 |
+
"text": [
|
965 |
+
" New_cases Cumulative_cases New_deaths Cumulative_deaths \\\n",
|
966 |
+
"0 NaN 0 NaN 0 \n",
|
967 |
+
"1 NaN 0 NaN 0 \n",
|
968 |
+
"2 NaN 0 NaN 0 \n",
|
969 |
+
"3 NaN 0 NaN 0 \n",
|
970 |
+
"4 NaN 0 NaN 0 \n",
|
971 |
+
"\n",
|
972 |
+
" Date_reported_2020-01-05 Date_reported_2020-01-12 \\\n",
|
973 |
+
"0 1 0 \n",
|
974 |
+
"1 0 1 \n",
|
975 |
+
"2 0 0 \n",
|
976 |
+
"3 0 0 \n",
|
977 |
+
"4 0 0 \n",
|
978 |
+
"\n",
|
979 |
+
" Date_reported_2020-01-19 Date_reported_2020-01-26 \\\n",
|
980 |
+
"0 0 0 \n",
|
981 |
+
"1 0 0 \n",
|
982 |
+
"2 1 0 \n",
|
983 |
+
"3 0 1 \n",
|
984 |
+
"4 0 0 \n",
|
985 |
+
"\n",
|
986 |
+
" Date_reported_2020-02-02 Date_reported_2020-02-09 ... Country_Zambia \\\n",
|
987 |
+
"0 0 0 ... 0 \n",
|
988 |
+
"1 0 0 ... 0 \n",
|
989 |
+
"2 0 0 ... 0 \n",
|
990 |
+
"3 0 0 ... 0 \n",
|
991 |
+
"4 1 0 ... 0 \n",
|
992 |
+
"\n",
|
993 |
+
" Country_Zimbabwe \\\n",
|
994 |
+
"0 0 \n",
|
995 |
+
"1 0 \n",
|
996 |
+
"2 0 \n",
|
997 |
+
"3 0 \n",
|
998 |
+
"4 0 \n",
|
999 |
+
"\n",
|
1000 |
+
" Country_occupied Palestinian territory, including east Jerusalem \\\n",
|
1001 |
+
"0 0 \n",
|
1002 |
+
"1 0 \n",
|
1003 |
+
"2 0 \n",
|
1004 |
+
"3 0 \n",
|
1005 |
+
"4 0 \n",
|
1006 |
+
"\n",
|
1007 |
+
" WHO_region_AFRO WHO_region_AMRO WHO_region_EMRO WHO_region_EURO \\\n",
|
1008 |
+
"0 0 0 1 0 \n",
|
1009 |
+
"1 0 0 1 0 \n",
|
1010 |
+
"2 0 0 1 0 \n",
|
1011 |
+
"3 0 0 1 0 \n",
|
1012 |
+
"4 0 0 1 0 \n",
|
1013 |
+
"\n",
|
1014 |
+
" WHO_region_OTHER WHO_region_SEARO WHO_region_WPRO \n",
|
1015 |
+
"0 0 0 0 \n",
|
1016 |
+
"1 0 0 0 \n",
|
1017 |
+
"2 0 0 0 \n",
|
1018 |
+
"3 0 0 0 \n",
|
1019 |
+
"4 0 0 0 \n",
|
1020 |
+
"\n",
|
1021 |
+
"[5 rows x 719 columns]\n"
|
1022 |
+
]
|
1023 |
+
}
|
1024 |
+
],
|
1025 |
+
"source": [
|
1026 |
+
"import pandas as pd\n",
|
1027 |
+
"\n",
|
1028 |
+
"def one_hot_encode_objects(df):\n",
|
1029 |
+
" object_cols = df.select_dtypes(include='object').columns\n",
|
1030 |
+
"\n",
|
1031 |
+
" for col in object_cols:\n",
|
1032 |
+
" if \"date\" in col:\n",
|
1033 |
+
" continue\n",
|
1034 |
+
"\n",
|
1035 |
+
" # Perform one-hot encoding\n",
|
1036 |
+
" dummies = pd.get_dummies(df[col], prefix=col).astype(int)\n",
|
1037 |
+
" df = pd.concat([df, dummies], axis=1)\n",
|
1038 |
+
" \n",
|
1039 |
+
" df = df.drop(columns=object_cols)\n",
|
1040 |
+
" return df\n",
|
1041 |
+
"\n",
|
1042 |
+
"\n",
|
1043 |
+
"def preprocessing(query):\n",
|
1044 |
+
" df=pd.read_csv(\"final/\"+query+\".csv\")\n",
|
1045 |
+
" # print(df.head())\n",
|
1046 |
+
" df=one_hot_encode_objects(df)\n",
|
1047 |
+
" print(df.head())\n",
|
1048 |
+
" \n",
|
1049 |
+
" \n",
|
1050 |
+
"preprocessing(\"covid 19\")"
|
1051 |
+
]
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"cell_type": "code",
|
1055 |
+
"execution_count": 2,
|
1056 |
+
"id": "f4ab7ad9",
|
1057 |
+
"metadata": {},
|
1058 |
+
"outputs": [
|
1059 |
+
{
|
1060 |
+
"name": "stdout",
|
1061 |
+
"output_type": "stream",
|
1062 |
+
"text": [
|
1063 |
+
"Reduced file saved to: final/twitter sentiment analysis.csv\n"
|
1064 |
+
]
|
1065 |
+
}
|
1066 |
+
],
|
1067 |
+
"source": [
|
1068 |
+
"import pandas as pd\n",
|
1069 |
+
"\n",
|
1070 |
+
"def reduce_csv_to_10_percent(file_path):\n",
|
1071 |
+
" # Read the original CSV\n",
|
1072 |
+
" df = pd.read_csv(file_path)\n",
|
1073 |
+
"\n",
|
1074 |
+
" # Sample 10% of the rows\n",
|
1075 |
+
" reduced_df = df.sample(frac=0.1, random_state=42)\n",
|
1076 |
+
"\n",
|
1077 |
+
" # Save back to the original file path, overwriting it\n",
|
1078 |
+
" reduced_df.to_csv(file_path, index=False)\n",
|
1079 |
+
" print(f\"Reduced file saved to: {file_path}\")\n",
|
1080 |
+
"\n",
|
1081 |
+
"# Example usage\n",
|
1082 |
+
"reduce_csv_to_10_percent(\"final/twitter sentiment analysis.csv\")"
|
1083 |
+
]
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"cell_type": "code",
|
1087 |
+
"execution_count": null,
|
1088 |
+
"id": "5644317d",
|
1089 |
+
"metadata": {},
|
1090 |
+
"outputs": [],
|
1091 |
+
"source": []
|
1092 |
+
}
|
1093 |
+
],
|
1094 |
+
"metadata": {
|
1095 |
+
"kernelspec": {
|
1096 |
+
"display_name": "base",
|
1097 |
+
"language": "python",
|
1098 |
+
"name": "python3"
|
1099 |
+
},
|
1100 |
+
"language_info": {
|
1101 |
+
"codemirror_mode": {
|
1102 |
+
"name": "ipython",
|
1103 |
+
"version": 3
|
1104 |
+
},
|
1105 |
+
"file_extension": ".py",
|
1106 |
+
"mimetype": "text/x-python",
|
1107 |
+
"name": "python",
|
1108 |
+
"nbconvert_exporter": "python",
|
1109 |
+
"pygments_lexer": "ipython3",
|
1110 |
+
"version": "3.12.7"
|
1111 |
+
}
|
1112 |
+
},
|
1113 |
+
"nbformat": 4,
|
1114 |
+
"nbformat_minor": 5
|
1115 |
+
}
|
workflow.txt
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1. seprate attributes and data
|
2 |
+
2. remove the datatypes from the attributes
|
3 |
+
C:\Users\Niall Dcunha\DatasetCreator\house price prediction\21754539_dataset
|
4 |
+
|
5 |
+
# import os
|
6 |
+
# import glob
|
7 |
+
# import pandas as pd
|
8 |
+
# import openai
|
9 |
+
# from openai import OpenAI
|
10 |
+
# from dotenv import load_dotenv
|
11 |
+
# import ast
|
12 |
+
# import re
|
13 |
+
|
14 |
+
# def extract_dict_from_response(response: str) -> dict:
|
15 |
+
# # Try extracting code block content containing the dictionary
|
16 |
+
# match = re.search(r"```(?:python)?\s*(\{.*?\})\s*```", response, re.DOTALL)
|
17 |
+
# if match:
|
18 |
+
# mapping_str = match.group(1)
|
19 |
+
# else:
|
20 |
+
# # Try extracting dictionary directly if it's not in code block
|
21 |
+
# match = re.search(r"(\{.*\})", response, re.DOTALL)
|
22 |
+
# if not match:
|
23 |
+
# raise ValueError("❌ Could not find a Python dictionary in the response.")
|
24 |
+
# mapping_str = match.group(1)
|
25 |
+
|
26 |
+
# try:
|
27 |
+
# return ast.literal_eval(mapping_str)
|
28 |
+
# except Exception as e:
|
29 |
+
# print("⚠️ Failed to evaluate extracted dictionary string.")
|
30 |
+
# print("String:", mapping_str)
|
31 |
+
# raise e
|
32 |
+
|
33 |
+
# # Load environment variables
|
34 |
+
# load_dotenv()
|
35 |
+
# client = OpenAI(
|
36 |
+
# api_key=os.getenv("OPENAI_API_KEY"),
|
37 |
+
# base_url=os.getenv("OPENAI_API_BASE") # Optional: for Azure or self-hosted
|
38 |
+
# )
|
39 |
+
|
40 |
+
# def load_csv_files(folder_path):
|
41 |
+
# csv_files = glob.glob(os.path.join(folder_path, "*.csv"))
|
42 |
+
# dataframes = []
|
43 |
+
# column_sets = []
|
44 |
+
# valid_paths = []
|
45 |
+
|
46 |
+
# print("📥 Reading CSV files...")
|
47 |
+
|
48 |
+
# for file in csv_files:
|
49 |
+
# try:
|
50 |
+
# df = pd.read_csv(file)
|
51 |
+
# dataframes.append(df)
|
52 |
+
# column_sets.append(list(df.columns))
|
53 |
+
# valid_paths.append(file)
|
54 |
+
# print(f"✅ Loaded: {os.path.basename(file)}")
|
55 |
+
# except pd.errors.ParserError as e:
|
56 |
+
# print(f"❌ Skipping file due to parsing error: {os.path.basename(file)}")
|
57 |
+
# print(f" ↳ {e}")
|
58 |
+
# except Exception as e:
|
59 |
+
# print(f"⚠️ Unexpected error with file {os.path.basename(file)}: {e}")
|
60 |
+
|
61 |
+
# return dataframes, column_sets, valid_paths
|
62 |
+
|
63 |
+
# def generate_mapping_prompt(column_sets):
|
64 |
+
# prompt = (
|
65 |
+
# "You are a data scientist helping to merge multiple ML prediction datasets. "
|
66 |
+
# "Each CSV may have different or similar column names. I need a unified mapping to standardize these datasets. "
|
67 |
+
# "Also, please identify likely prediction label columns (e.g., price, quality, outcome).\n\n"
|
68 |
+
# "Here are the column headers from each CSV:\n"
|
69 |
+
# )
|
70 |
+
# for i, columns in enumerate(column_sets):
|
71 |
+
# prompt += f"CSV {i+1}: {columns}\n"
|
72 |
+
# prompt += (
|
73 |
+
# "\nPlease provide:\n"
|
74 |
+
# "1. A Python dictionary mapping similar columns across these CSVs.\n"
|
75 |
+
# "2. A list of columns most likely to represent prediction labels.\n\n"
|
76 |
+
# "Format your response as:\n"
|
77 |
+
# "```python\n"
|
78 |
+
# "column_mapping = { ... }\n"
|
79 |
+
# "label_columns = [ ... ]\n"
|
80 |
+
# "```"
|
81 |
+
# )
|
82 |
+
# return prompt
|
83 |
+
|
84 |
+
# def get_column_mapping_from_openai(column_sets):
|
85 |
+
# prompt = generate_mapping_prompt(column_sets)
|
86 |
+
|
87 |
+
# response = client.chat.completions.create(
|
88 |
+
# model="gpt-4",
|
89 |
+
# messages=[
|
90 |
+
# {"role": "system", "content": "You are a helpful data scientist."},
|
91 |
+
# {"role": "user", "content": prompt}
|
92 |
+
# ],
|
93 |
+
# temperature=0.3
|
94 |
+
# )
|
95 |
+
|
96 |
+
# content = response.choices[0].message.content
|
97 |
+
# print("\n📩 Received response from OpenAI.")
|
98 |
+
|
99 |
+
# try:
|
100 |
+
# # Try parsing both dictionary and label list from the response
|
101 |
+
# column_mapping_match = re.search(r"column_mapping\s*=\s*(\{.*?\})", content, re.DOTALL)
|
102 |
+
# label_columns_match = re.search(r"label_columns\s*=\s*(\[.*?\])", content, re.DOTALL)
|
103 |
+
|
104 |
+
# if column_mapping_match:
|
105 |
+
# mapping = ast.literal_eval(column_mapping_match.group(1))
|
106 |
+
# else:
|
107 |
+
# raise ValueError("❌ Could not find `column_mapping` in the response.")
|
108 |
+
|
109 |
+
# if label_columns_match:
|
110 |
+
# label_columns = ast.literal_eval(label_columns_match.group(1))
|
111 |
+
# else:
|
112 |
+
# label_columns = []
|
113 |
+
|
114 |
+
# except Exception as e:
|
115 |
+
# print("⚠️ Error parsing OpenAI response:")
|
116 |
+
# print(content)
|
117 |
+
# raise e
|
118 |
+
|
119 |
+
# return mapping, label_columns
|
120 |
+
|
121 |
+
# def standardize_columns(df, mapping):
|
122 |
+
# new_columns = {col: mapping.get(col, col) for col in df.columns}
|
123 |
+
# return df.rename(columns=new_columns)
|
124 |
+
|
125 |
+
# def merge_csvs(folder_path, output_file="merged_dataset.csv"):
|
126 |
+
# dfs, column_sets, csv_paths = load_csv_files(folder_path)
|
127 |
+
|
128 |
+
# if not dfs:
|
129 |
+
# print("❌ No valid CSVs found to merge.")
|
130 |
+
# return
|
131 |
+
|
132 |
+
# print("\n🧠 Requesting column mapping from OpenAI...")
|
133 |
+
# mapping, label_columns = get_column_mapping_from_openai(column_sets)
|
134 |
+
|
135 |
+
# print("\n📌 Column Mapping:")
|
136 |
+
# for k, v in mapping.items():
|
137 |
+
# print(f" '{k}' -> '{v}'")
|
138 |
+
|
139 |
+
# print("\n🏷️ Suggested Label Columns:")
|
140 |
+
# for label in label_columns:
|
141 |
+
# print(f" - {label}")
|
142 |
+
|
143 |
+
# standardized_dfs = [standardize_columns(df, mapping) for df in dfs]
|
144 |
+
# merged_df = pd.concat(standardized_dfs, ignore_index=True, sort=False)
|
145 |
+
|
146 |
+
# merged_df.to_csv(output_file, index=False)
|
147 |
+
# print(f"\n✅ Merged dataset saved as '{output_file}'")
|
148 |
+
|
149 |
+
# if __name__ == "__main__":
|
150 |
+
# folder_path = "house"
|
151 |
+
|
152 |
+
|
153 |
+
import os
|
154 |
+
import glob
|
155 |
+
import pandas as pd
|
156 |
+
import ast
|
157 |
+
import re
|
158 |
+
from itertools import combinations
|
159 |
+
from rapidfuzz import fuzz, process
|
160 |
+
from dotenv import load_dotenv
|
161 |
+
from openai import OpenAI
|
162 |
+
|
163 |
+
# Manual rename map to standardize some known variations
|
164 |
+
manual_rename_map = {
|
165 |
+
"review": "text",
|
166 |
+
"text": "text",
|
167 |
+
"NumBedrooms": "bedrooms",
|
168 |
+
"HousePrice": "price",
|
169 |
+
"TARGET(PRICE_IN_LACS)": "price",
|
170 |
+
"SquareFootage": "area",
|
171 |
+
"SQUARE_FT": "area",
|
172 |
+
"sentiment": "label",
|
173 |
+
"target": "label",
|
174 |
+
"type": "label",
|
175 |
+
"variety": "label",
|
176 |
+
"class": "label",
|
177 |
+
"HeartDisease": "label",
|
178 |
+
"Heart Attack Risk (Binary)": "label",
|
179 |
+
"Heart Attack Risk": "label"
|
180 |
+
}
|
181 |
+
|
182 |
+
|
183 |
+
def normalize(col):
|
184 |
+
return re.sub(r'[^a-z0-9]', '', col.lower())
|
185 |
+
|
186 |
+
def apply_manual_renaming(df, rename_map):
|
187 |
+
renamed = {}
|
188 |
+
for col in df.columns:
|
189 |
+
if col in rename_map:
|
190 |
+
renamed[col] = rename_map[col]
|
191 |
+
return df.rename(columns=renamed)
|
192 |
+
|
193 |
+
def get_fuzzy_common_columns(cols_list, threshold=75):
|
194 |
+
base = cols_list[0]
|
195 |
+
common = set()
|
196 |
+
for col in base:
|
197 |
+
match_all = True
|
198 |
+
for other in cols_list[1:]:
|
199 |
+
match, score, _ = process.extractOne(col, other, scorer=fuzz.token_sort_ratio)
|
200 |
+
if score < threshold:
|
201 |
+
match_all = False
|
202 |
+
break
|
203 |
+
if match_all:
|
204 |
+
common.add(col)
|
205 |
+
return common
|
206 |
+
|
207 |
+
def sortFiles(dfs):
|
208 |
+
unique_dfs = []
|
209 |
+
seen = []
|
210 |
+
for i, df1 in enumerate(dfs):
|
211 |
+
duplicate = False
|
212 |
+
for j in seen:
|
213 |
+
df2 = dfs[j]
|
214 |
+
if df1.shape != df2.shape:
|
215 |
+
continue
|
216 |
+
if df1.reset_index(drop=True).equals(df2.reset_index(drop=True)):
|
217 |
+
duplicate = True
|
218 |
+
break
|
219 |
+
if not duplicate:
|
220 |
+
unique_dfs.append(df1)
|
221 |
+
seen.append(i)
|
222 |
+
return unique_dfs
|
223 |
+
|
224 |
+
def load_csv_files(folder_path):
|
225 |
+
csv_files = glob.glob(os.path.join(folder_path, "*.csv"))
|
226 |
+
dfs = []
|
227 |
+
column_sets = []
|
228 |
+
paths = []
|
229 |
+
|
230 |
+
for file in csv_files:
|
231 |
+
try:
|
232 |
+
df = pd.read_csv(file)
|
233 |
+
dfs.append(df)
|
234 |
+
column_sets.append(list(df.columns))
|
235 |
+
paths.append(file)
|
236 |
+
print(f"✅ Loaded: {os.path.basename(file)}")
|
237 |
+
except Exception as e:
|
238 |
+
print(f"❌ Failed to load {file}: {e}")
|
239 |
+
return dfs, column_sets, paths
|
240 |
+
|
241 |
+
def generate_mapping_prompt(column_sets):
|
242 |
+
prompt = (
|
243 |
+
"You are a data scientist helping to merge multiple machine learning prediction datasets. "
|
244 |
+
"Each CSV file may have different column names, even if they represent similar types of data. "
|
245 |
+
"Your task is to identify and map these similar columns across datasets to a common, unified name. "
|
246 |
+
"Columns with clearly similar features (e.g., 'Bedrooms' and 'BedroomsAbvGr') should be merged into one column with a relevant name like 'bedrooms'.\n\n"
|
247 |
+
"Avoid keeping redundant or unique columns that do not have any logical counterpart in other datasets unless they are essential. "
|
248 |
+
"The goal is not to maximize the number of columns or rows, but to create a clean, consistent dataset for training ML models.\n\n"
|
249 |
+
"Examples:\n"
|
250 |
+
"- Dataset1: 'Locality' -> Mumbai, Delhi\n"
|
251 |
+
"- Dataset2: 'Places' -> Goa, Singapore\n"
|
252 |
+
"→ Merge both into a common column like 'location'.\n\n"
|
253 |
+
"Please also identify likely label or target columns that are typically used for prediction (e.g., price, sentiment, outcome, quality).\n\n"
|
254 |
+
)
|
255 |
+
|
256 |
+
for i, cols in enumerate(column_sets):
|
257 |
+
prompt += f"CSV {i+1}: {cols}\n"
|
258 |
+
prompt += "\nPlease return:\n```python\ncolumn_mapping = { ... }\nlabel_columns = [ ... ]\n```"
|
259 |
+
return prompt
|
260 |
+
|
261 |
+
def get_column_mapping_from_openai(column_sets):
|
262 |
+
load_dotenv()
|
263 |
+
client = OpenAI(
|
264 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
265 |
+
base_url=os.getenv("OPENAI_API_BASE", "")
|
266 |
+
)
|
267 |
+
|
268 |
+
prompt = generate_mapping_prompt(column_sets)
|
269 |
+
|
270 |
+
response = client.chat.completions.create(
|
271 |
+
model="gpt-4",
|
272 |
+
messages=[
|
273 |
+
{"role": "system", "content": "You are a helpful data scientist."},
|
274 |
+
{"role": "user", "content": prompt}
|
275 |
+
],
|
276 |
+
temperature=0.3
|
277 |
+
)
|
278 |
+
|
279 |
+
content = response.choices[0].message.content
|
280 |
+
|
281 |
+
try:
|
282 |
+
column_mapping_match = re.search(r"column_mapping\s*=\s*(\{.*?\})", content, re.DOTALL)
|
283 |
+
label_columns_match = re.search(r"label_columns\s*=\s*(\[.*?\])", content, re.DOTALL)
|
284 |
+
column_mapping = ast.literal_eval(column_mapping_match.group(1)) if column_mapping_match else {}
|
285 |
+
label_columns = ast.literal_eval(label_columns_match.group(1)) if label_columns_match else []
|
286 |
+
except Exception as e:
|
287 |
+
print("⚠️ Error parsing OpenAI response:")
|
288 |
+
print(content)
|
289 |
+
raise e
|
290 |
+
|
291 |
+
return column_mapping, label_columns
|
292 |
+
|
293 |
+
def clean_and_merge(folder, query=None, use_ai=True):
|
294 |
+
os.makedirs("./final", exist_ok=True)
|
295 |
+
dfs, column_sets, csv_paths = load_csv_files(folder)
|
296 |
+
|
297 |
+
if not dfs:
|
298 |
+
print("No valid CSVs found.")
|
299 |
+
return
|
300 |
+
|
301 |
+
dfs = sortFiles(dfs)
|
302 |
+
dfs = [apply_manual_renaming(df, manual_rename_map) for df in dfs]
|
303 |
+
|
304 |
+
if use_ai:
|
305 |
+
try:
|
306 |
+
column_mapping, label_columns = get_column_mapping_from_openai(column_sets)
|
307 |
+
dfs = [df.rename(columns={col: column_mapping.get(col, col) for col in df.columns}) for df in dfs]
|
308 |
+
except Exception as e:
|
309 |
+
print("Falling back to fuzzy matching due to OpenAI error:", e)
|
310 |
+
use_ai = False
|
311 |
+
|
312 |
+
if not use_ai:
|
313 |
+
# Normalize columns for fuzzy match fallback
|
314 |
+
normalized_cols = []
|
315 |
+
for df in dfs:
|
316 |
+
normalized_cols.append({normalize(col) for col in df.columns})
|
317 |
+
|
318 |
+
# Get best combination with fuzzy common columns
|
319 |
+
max_common = set()
|
320 |
+
best_combo = []
|
321 |
+
for i in range(2, len(dfs)+1):
|
322 |
+
for combo in combinations(range(len(dfs)), i):
|
323 |
+
selected = [normalized_cols[j] for j in combo]
|
324 |
+
fuzzy_common = get_fuzzy_common_columns(selected)
|
325 |
+
if len(fuzzy_common) >= len(max_common):
|
326 |
+
max_common = fuzzy_common
|
327 |
+
best_combo = combo
|
328 |
+
|
329 |
+
# Harmonize and align
|
330 |
+
aligned_dfs = []
|
331 |
+
for idx in best_combo:
|
332 |
+
df = dfs[idx]
|
333 |
+
col_map = {}
|
334 |
+
for std_col in max_common:
|
335 |
+
match, _, _ = process.extractOne(std_col, [normalize(col) for col in df.columns])
|
336 |
+
for col in df.columns:
|
337 |
+
if normalize(col) == match:
|
338 |
+
col_map[col] = std_col
|
339 |
+
break
|
340 |
+
df_subset = df[list(col_map.keys())].rename(columns=col_map)
|
341 |
+
aligned_dfs.append(df_subset)
|
342 |
+
|
343 |
+
combined_df = pd.concat(aligned_dfs, ignore_index=True)
|
344 |
+
else:
|
345 |
+
combined_df = pd.concat(dfs, ignore_index=True)
|
346 |
+
|
347 |
+
# Label assignment fallback
|
348 |
+
for i, df in enumerate(dfs):
|
349 |
+
if 'label' not in df.columns:
|
350 |
+
name = os.path.basename(csv_paths[i]).split(".")[0].lower()
|
351 |
+
name_cleaned = name
|
352 |
+
if query:
|
353 |
+
words = set(re.sub(r'[^a-z]', ' ', query.lower()).split())
|
354 |
+
for word in words:
|
355 |
+
name_cleaned = name_cleaned.replace(word, "")
|
356 |
+
df['label'] = name_cleaned
|
357 |
+
|
358 |
+
# Decide best final file
|
359 |
+
largest_df = max(dfs, key=lambda df: len(df))
|
360 |
+
flag = False
|
361 |
+
|
362 |
+
if len(largest_df) > len(combined_df) and len(largest_df.columns) > 2:
|
363 |
+
flag = True
|
364 |
+
elif len(combined_df) > len(largest_df) and (len(largest_df.columns) - len(combined_df.columns)) > 3 and len(largest_df.columns) < 7:
|
365 |
+
flag = True
|
366 |
+
|
367 |
+
output_file = f"./final/{query or os.path.basename(folder)}.csv"
|
368 |
+
if flag:
|
369 |
+
largest_df.to_csv(output_file, index=False)
|
370 |
+
print(f"⚠️ Saved fallback single file due to poor merge: {output_file}")
|
371 |
+
else:
|
372 |
+
combined_df.to_csv(output_file, index=False)
|
373 |
+
print(f"✅ Saved merged file: {output_file}")
|
374 |
+
|
375 |
+
# Example usage:
|
376 |
+
clean_and_merge("house", query="house", use_ai=True)
|
377 |
+
# merge_csvs(folder_path)
|