Spaces:
Build error
Build error
import streamlit as st | |
st.markdown("""### TL;DR: give me the keywords! | |
Here you can get the keywords and topic of the article based on it's title or abstract. | |
The only supported language is English.""") | |
st.markdown("<p style=\"text-align:center\"><img width=700px src='https://c.tenor.com/IKt-6tAk9CUAAAAd/thats-a-lot-of-words-lots-of-words.gif'></p>", unsafe_allow_html=True) | |
#from transformers import pipeline | |
#pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") | |
#st.markdown("#### Title:") | |
title = st.text_area("Title:") | |
abstract = st.text_area("abstract:") | |
from transformers import AutoModel, AutoTokenizer | |
#from tqdm import tqdm as tqdm | |
import transformers | |
transformers.utils.logging.disable_progress_bar() | |
model_name = "distilroberta-base" | |
main_model = AutoModel.from_pretrained(model_name) | |
main_tokenizer = AutoTokenizer.from_pretrained(model_name) | |
from utils.utils import * | |
import spacy | |
#import en_core_web_sm | |
import os | |
os.system("python3 -m spacy download en") | |
# Вообще, стоит найти pipeline, заточенный под научный текст. | |
# Но этим займёмся потом, если будет время. | |
main_nlp = spacy.load('en_core_web_sm') | |
text = title + abstract | |
if not text is None and len(text) > 0: | |
#keywords = get_candidates(text, main_nlp) | |
keywords = get_keywords(summaries[0], main_nlp, main_model, main_tokenizer) | |
st.markdown(f"{keywords}") | |
else: | |
st.markdown("Please, try to enter something.") | |