import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image import torch # Load model and processor processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") # Function to generate captions def generate_caption(image): image = Image.open(image).convert("RGB") inputs = processor(image, return_tensors="pt") outputs = model.generate(**inputs) caption = processor.decode(outputs[0], skip_special_tokens=True) return caption # Create Gradio Interface iface = gr.Interface( fn=generate_caption, inputs=gr.Image(type="pil"), outputs="text", title="AI Image Caption Generator", description="Upload an image and get an AI-generated caption.", ) # Run app iface.launch()