import streamlit as st from utils.logger import setup_logger import pandas as pd from PIL import Image import os logger = setup_logger(__name__) def prune_bank_statement_for_display(analysis_results_for_id): data_to_display = {} data_to_display["document_category"] = "bank_statement" data_to_display["document_type"] = "bank_statement" data_to_display["account_holder_name"] = analysis_results_for_id.get( "account_holder_name", None) data_to_display["account_holder_address"] = analysis_results_for_id.get( "account_holder_address", None) data_to_display["bank_name"] = analysis_results_for_id.get( "bank_name", None) data_to_display["account_number"] = analysis_results_for_id.get( "account_number", None) data_to_display["sort_code"] = analysis_results_for_id.get( "sort_code", None) data_to_display["statement_start_date"] = analysis_results_for_id.get( "statement_start_date", None) data_to_display["statement_end_date"] = analysis_results_for_id.get( "statement_end_date", None) data_to_display["salary_credits"] = analysis_results_for_id.get( "salary_credits", None) return data_to_display def display_bank_statement(extracted_files, analysis_results_pruned): col1, col2 = st.columns([2, 3]) logger.info(f"file_path while displaying: {extracted_files}") st.markdown("---") with col1: if len(extracted_files) > 1: st.image(extracted_files, caption=[os.path.basename( img) for img in extracted_files], use_container_width=True) else: image = Image.open(extracted_files[0]) st.image(image, caption=os.path.basename( extracted_files[0])) # , # use_container_width=True) logger.info( f"analysis_results_pruned : {analysis_results_pruned}") with col2: dict_str = {} for key, value in analysis_results_pruned.items(): if key != 'salary_credits': dict_str[key] = value simple_df = pd.DataFrame.from_dict( dict_str, orient='index', columns=['Value']).reset_index() simple_df.columns = ['Key', 'Value'] simple_df = simple_df.fillna(value="Missing") simple_df.index += 1 st.dataframe(simple_df, use_container_width=True) st.markdown("Salary Credits") salary_dict = analysis_results_pruned['salary_credits'] logger.info(f"salary_dict : {salary_dict}") for salary_details in salary_dict: simple_df = pd.DataFrame.from_dict( salary_details, orient='index', columns=['Value']).reset_index() simple_df.columns = ['Key', 'Value'] simple_df = simple_df.fillna(value="Missing") simple_df.index += 1 st.dataframe(simple_df, use_container_width=True) logger.info(f"simple_df: {simple_df}")