vamseelatha2002 commited on
Commit
6b3b226
·
verified ·
1 Parent(s): 4bf718d

Update evaluation.py

Browse files
Files changed (1) hide show
  1. evaluation.py +20 -2
evaluation.py CHANGED
@@ -194,13 +194,31 @@ def calculate_metrics(question, q_dataset, response, docs, time_taken):
194
  for metric_name in ground_truth_metrics:
195
  ground_truth_value = ground_truth_metrics[metric_name]
196
  print(f"RMSE for {metric_name}: {ground_truth_value}")
197
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
  if isinstance(predicted_metrics_rmse, (int, float)) and isinstance(ground_truth_metrics, (int, float)):
199
  rmse_value = compute_rmse(predicted_metrics_rmse.values(), ground_truth_metrics.values())
200
  predicted_metrics_rmse["rmse"] = rmse_value # Adding RMSE to metrics
201
  else:
202
  predicted_metrics_rmse["rmse"] = "Invalid RMSE calculation"
203
-
204
  return predicted_metrics
205
 
206
  ''' def retrieve_ground_truths(question, dataset):
 
194
  for metric_name in ground_truth_metrics:
195
  ground_truth_value = ground_truth_metrics[metric_name]
196
  print(f"RMSE for {metric_name}: {ground_truth_value}")
197
+ rmse_values = []
198
+ ground_truth_values = []
199
+ for metric_name in predicted_metrics_rmse:
200
+ predicted_value = predicted_metrics_rmse[metric_name]
201
+ ground_truth_value = ground_truth_metrics.get(metric_name, None)
202
+
203
+ # Ensure both predicted and ground truth values are numeric
204
+ if isinstance(predicted_value, (int, float)) and isinstance(ground_truth_value, (int, float)):
205
+ rmse_values.append(predicted_value)
206
+ ground_truth_values.append(ground_truth_value)
207
+ else:
208
+ print(f"Skipping RMSE for {metric_name}: One or both values are non-numeric")
209
+
210
+ if rmse_values and ground_truth_values:
211
+ overall_rmse = compute_rmse(rmse_values, ground_truth_values)
212
+ print(f"Overall RMSE: {overall_rmse}")
213
+ else:
214
+ print("Invalid RMSE calculation due to non-numeric values.")
215
+ '''
216
  if isinstance(predicted_metrics_rmse, (int, float)) and isinstance(ground_truth_metrics, (int, float)):
217
  rmse_value = compute_rmse(predicted_metrics_rmse.values(), ground_truth_metrics.values())
218
  predicted_metrics_rmse["rmse"] = rmse_value # Adding RMSE to metrics
219
  else:
220
  predicted_metrics_rmse["rmse"] = "Invalid RMSE calculation"
221
+ '''
222
  return predicted_metrics
223
 
224
  ''' def retrieve_ground_truths(question, dataset):