23RAG7 / app.py
vamseelatha2002's picture
Update app.py
c653642 verified
import streamlit as st
from generator import generate_response_from_document
from retrieval import retrieve_documents_hybrid,find_query_dataset
from evaluation import calculate_metrics
from data_processing import load_recent_questions, save_recent_question
import time
import matplotlib.pyplot as plt
# Page Title
st.title("RAG7 - Real World RAG System")
st.markdown(
"""
<style>
.stTextArea textarea {
background-color: white !important;
font-size: 20px !important;
color: black !important;
}
</style>
""",
unsafe_allow_html=True
)
# global retrieved_documents
# retrieved_documents = []
# global response
# response = ""
# global time_taken_for_response
# time_taken_for_response = 'N/A'
# @st.cache_data
# def load_data():
# load_data_from_faiss()
# data_status = load_data()
# Question Section
st.subheader("Hi, What do you want to know today?")
question = st.text_area("Enter your question:", placeholder="Type your question here...", height=100)
question = question.strip()
# # Submit Button
# if st.button("Submit"):
# start_time = time.time()
# retrieved_documents = retrieve_documents_hybrid(question, 10)
# response = generate_response_from_document(question, retrieved_documents)
# end_time = time.time()
# time_taken_for_response = end_time-start_time
# else:
# response = ""
# # Response Section
# st.subheader("Response")
# st.text_area("Generated Response:", value=response, height=150, disabled=True)
# # Metrics Section
# st.subheader("Metrics")
# col1, col2 = st.columns([1, 3]) # Creating two columns for button and metrics display
# with col1:
# if st.button("Calculate Metrics"):
# metrics = calculate_metrics(question, response, retrieved_documents, time_taken_for_response)
# else:
# metrics = ""
# with col2:
# st.text_area("Metrics:", value=metrics, height=100, disabled=True)
if "retrieved_documents" not in st.session_state:
st.session_state.retrieved_documents = []
if "response" not in st.session_state:
st.session_state.response = ""
if "time_taken_for_response" not in st.session_state:
st.session_state.time_taken_for_response = "N/A"
if "metrics" not in st.session_state:
st.session_state.metrics = {}
if "query_dataset" not in st.session_state:
st.session_state.query_dataset = ''
if "rmse" not in st.session_state:
st.session_state.rmse = 19999
recent_questions = load_recent_questions()
# for visualization
# response_time = [q["response_time"] for q in recent_data["questions"]]
# labels = [f"Q{i+1}" for i in range(len(response_time))] # Labels for X-axis
# fig, ax = plt.subplots()
# ax.set_xlabel("Recent Questions")
# ax.set_ylabel("Time Taken for Response")
# ax.legend()
# st.sidebar.pyplot(fig)
if recent_questions and "questions" in recent_questions and recent_questions["questions"]:
recent_qns = list(reversed(recent_questions["questions"]))
st.sidebar.title("Analytics")
# Extract response times and labels
response_time = [q["response_time"] for q in recent_qns]
labels = [f"Q{i+1}" for i in range(len(response_time))]
# Plot graph
fig, ax = plt.subplots()
ax.plot(labels, response_time, marker="o", linestyle="-", color="skyblue")
ax.set_xlabel("Recent Questions")
ax.set_ylabel("Time Taken for Response (seconds)")
ax.set_title("Response Time Analysis")
# Display the plot in the sidebar
st.sidebar.pyplot(fig)
st.sidebar.markdown("---")
# Display Recent Questions
st.sidebar.title("Recent Questions")
for q in recent_qns: # Show latest first
st.sidebar.write(f"🔹 {q['question']}")
else:
st.sidebar.write("No recent questions")
# Separator
# Streamlit Sidebar for Recent Questions
# Submit Button
# if st.button("Submit"):
# start_time = time.time()
# st.session_state.retrieved_documents = retrieve_documents_hybrid(question, 10)
# st.session_state.response = generate_response_from_document(question, st.session_state.retrieved_documents)
# end_time = time.time()
# st.session_state.time_taken_for_response = end_time - start_time
if st.button("Submit"):
start_time = time.time()
st.session_state.metrics = {}
st.session_state.query_dataset = find_query_dataset(question)
st.session_state.retrieved_documents = retrieve_documents_hybrid(question, st.session_state.query_dataset, 10)
st.session_state.response = generate_response_from_document(question, st.session_state.retrieved_documents)
end_time = time.time()
st.session_state.time_taken_for_response = end_time - start_time
save_recent_question(question, st.session_state.time_taken_for_response)
# Display stored response
st.subheader("Response")
st.text_area("Generated Response:", value=st.session_state.response, height=150, disabled=True)
col1, col2 = st.columns([1, 3]) # Creating two columns for button and metrics display
# Display RMSE
#st.json(st.session_state.rmse)
# # Calculate Metrics Button
# with col1:
# if st.button("Calculate Metrics"):
# metrics = calculate_metrics(question, st.session_state.response, st.session_state.retrieved_documents, st.session_state.time_taken_for_response)
# else:
# metrics = {}
# with col2:
# #st.text_area("Metrics:", value=metrics, height=100, disabled=True)
# st.json(metrics)
# Calculate Metrics Button
with col1:
if st.button("Show Metrics"):
st.session_state.metrics = calculate_metrics(question, st.session_state.query_dataset, st.session_state.response, st.session_state.retrieved_documents, st.session_state.time_taken_for_response)
else:
metrics_ = {}
with col2:
#st.text_area("Metrics:", value=metrics, height=100, disabled=True)
st.json(st.session_state.metrics)