{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Timestamp('2024-11-23 01:38:25+0000', tz='UTC')" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(all_trades.creation_timestamp)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Timestamp('2024-09-22 00:02:05+0000', tz='UTC')" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "min(all_trades.creation_timestamp)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "new_trades = pd.read_parquet('../data/new_fpmmTrades.parquet')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 3798 entries, 0 to 3797\n", "Data columns (total 24 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 collateralAmount 3798 non-null object\n", " 1 collateralAmountUSD 3798 non-null object\n", " 2 collateralToken 3798 non-null object\n", " 3 creationTimestamp 3798 non-null object\n", " 4 trader_address 3798 non-null object\n", " 5 feeAmount 3798 non-null object\n", " 6 id 3798 non-null object\n", " 7 oldOutcomeTokenMarginalPrice 3798 non-null object\n", " 8 outcomeIndex 3798 non-null object\n", " 9 outcomeTokenMarginalPrice 3798 non-null object\n", " 10 outcomeTokensTraded 3798 non-null object\n", " 11 title 3798 non-null object\n", " 12 transactionHash 3798 non-null object\n", " 13 type 3798 non-null object\n", " 14 market_creator 3798 non-null object\n", " 15 fpmm.answerFinalizedTimestamp 0 non-null object\n", " 16 fpmm.arbitrationOccurred 3798 non-null bool \n", " 17 fpmm.currentAnswer 0 non-null object\n", " 18 fpmm.id 3798 non-null object\n", " 19 fpmm.isPendingArbitration 3798 non-null bool \n", " 20 fpmm.openingTimestamp 3798 non-null object\n", " 21 fpmm.outcomes 3798 non-null object\n", " 22 fpmm.title 3798 non-null object\n", " 23 fpmm.condition.id 3798 non-null object\n", "dtypes: bool(2), object(22)\n", "memory usage: 660.3+ KB\n" ] } ], "source": [ "new_trades.info()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3798" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(new_trades.id.unique())" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n", " 'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n", " 'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n", " 'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n", " 'transactionHash', 'type', 'market_creator',\n", " 'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n", " 'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n", " 'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n", " 'fpmm.condition.id'],\n", " dtype='object')" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_trades.columns" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'1732609530'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(new_trades.creationTimestamp)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "old_trades = pd.read_parquet('../data/fpmmTrades.parquet')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'1732609530'" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(old_trades.creationTimestamp)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "all_trades_before = pd.read_parquet('../data/daily_info.parquet')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 3882 entries, 0 to 3881\n", "Data columns (total 21 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 trader_address 3882 non-null object \n", " 1 market_creator 3882 non-null object \n", " 2 trade_id 3882 non-null object \n", " 3 creation_timestamp 3882 non-null datetime64[ns, UTC]\n", " 4 title 3882 non-null object \n", " 5 market_status 3882 non-null object \n", " 6 collateral_amount 3882 non-null float64 \n", " 7 outcome_index 3882 non-null object \n", " 8 trade_fee_amount 3882 non-null float64 \n", " 9 outcomes_tokens_traded 3882 non-null float64 \n", " 10 current_answer 0 non-null object \n", " 11 is_invalid 3882 non-null bool \n", " 12 winning_trade 0 non-null object \n", " 13 earnings 3882 non-null float64 \n", " 14 redeemed 3882 non-null bool \n", " 15 redeemed_amount 3882 non-null int64 \n", " 16 num_mech_calls 3882 non-null int64 \n", " 17 mech_fee_amount 3882 non-null float64 \n", " 18 net_earnings 3882 non-null float64 \n", " 19 roi 3882 non-null float64 \n", " 20 staking 3882 non-null object \n", "dtypes: bool(2), datetime64[ns, UTC](1), float64(7), int64(2), object(9)\n", "memory usage: 583.9+ KB\n" ] } ], "source": [ "all_trades_before.info()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n", " 'title', 'market_status', 'collateral_amount', 'outcome_index',\n", " 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n", " 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n", " 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n", " 'roi', 'staking'],\n", " dtype='object')" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_trades_before.columns" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Timestamp('2024-11-26 10:19:30+0000', tz='UTC')" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(all_trades_before.creation_timestamp)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "staking\n", "non_agent 2376\n", "quickstart 672\n", "pearl 502\n", "non_staking 332\n", "Name: count, dtype: int64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_trades_before.staking.value_counts()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "all_trades_df = pd.read_parquet('../json_data/all_trades_df.parquet')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n", " 'title', 'market_status', 'collateral_amount', 'outcome_index',\n", " 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n", " 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n", " 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n", " 'roi', 'staking', 'nr_mech_calls'],\n", " dtype='object')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_trades_df.columns" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Timestamp('2024-11-23 01:38:25+0000', tz='UTC')" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(all_trades_df.creation_timestamp)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "hf_dashboards", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }