cyberosa
Adding graph for trader type
d41146f
raw
history blame
5.6 kB
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import duckdb
import logging
from scripts.metrics import (
compute_weekly_metrics_by_market_creator,
compute_weekly_metrics_by_trader_type,
)
from tabs.trader_plots import (
plot_trader_metrics_by_market_creator,
plot_trader_metrics_by_trader_type,
default_trader_metric,
trader_metric_choices,
get_trader_metrics_text,
)
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_all_data():
"""
Get parquet file from weekly stats
"""
logger.info("Getting traders data")
con = duckdb.connect(":memory:")
# Query to fetch data from all_trades_profitability.parquet
query1 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
con.close()
return df1
def prepare_data():
all_trades = get_all_data()
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
# adding multi-bet variables
volume_trades_per_trader_and_market = (
all_trades.groupby(["trader_address", "title"])["roi"].count().reset_index()
)
volume_trades_per_trader_and_market.rename(
columns={"roi": "nr_trades_per_market"}, inplace=True
)
trader_agents_data = pd.merge(
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
)
# right now all traders are of the same type: singlebet
trader_agents_data["trader_type"] = "singlebet"
trader_agents_data = trader_agents_data.sort_values(
by="creation_timestamp", ascending=True
)
trader_agents_data["month_year_week"] = (
trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
)
return trader_agents_data
trader_agents_data = prepare_data()
print("trader agents data before computing metrics")
print(trader_agents_data.head())
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data
)
print("weekly metrics by market creator")
print(weekly_metrics_by_market_creator.head())
# get weekly metrics by trader type: multibet, singlebet or all.
weekly_metrics_by_trader_type = compute_weekly_metrics_by_trader_type(
trader_agents_data
)
with demo:
gr.HTML("<h1>Trader agents monitoring dashboard </h1>")
gr.Markdown(
"This app shows the weekly performance of the trader agents in Olas Predict."
)
with gr.Tabs():
with gr.TabItem("🔥Trader Agents Dashboard"):
with gr.Row():
gr.Markdown("# Weekly metrics of trader agents by market creator")
with gr.Row():
trader_details_selector = gr.Dropdown(
label="Select a trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_trader_metrics_text()
def update_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_metrics_by_market_creator,
)
trader_details_selector.change(
update_trader_details,
inputs=trader_details_selector,
outputs=trader_markets_plot,
)
with gr.Row():
gr.Markdown(
"# Weekly metrics for trader agents by trader type (multibet or singlebet)"
)
with gr.Row():
trader_metric_selector = gr.Dropdown(
label="Select a trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_type_plot = plot_trader_metrics_by_trader_type(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_trader_type,
)
with gr.Column(scale=1):
trader_metrics_text = get_trader_metrics_text()
def update_trader_metric(trader_metric):
return plot_trader_metrics_by_trader_type(
metric_name=trader_metric,
traders_df=weekly_metrics_by_trader_type,
)
trader_metric_selector.change(
update_trader_metric,
inputs=trader_metric_selector,
outputs=trader_type_plot,
)
demo.queue(default_concurrency_limit=40).launch()