Spaces:
Runtime error
Runtime error
import pandas as pd | |
from tqdm import tqdm | |
DEFAULT_MECH_FEE = 0.01 # xDAI | |
def compute_metrics( | |
trader_address: str, trader_data: pd.DataFrame, live_metrics: bool = False | |
) -> dict: | |
if len(trader_data) == 0: | |
# print("No data to compute metrics") | |
return {} | |
agg_metrics = {} | |
agg_metrics["trader_address"] = trader_address | |
total_bet_amounts = trader_data.collateral_amount.sum() | |
total_num_mech_calls = trader_data.num_mech_calls.sum() | |
agg_metrics["bet_amount"] = total_bet_amounts | |
agg_metrics["nr_mech_calls"] = total_num_mech_calls | |
agg_metrics["staking"] = trader_data.iloc[0].staking | |
if live_metrics: | |
return agg_metrics | |
total_net_earnings = trader_data.net_earnings.sum() | |
agg_metrics["net_earnings"] = total_net_earnings | |
agg_metrics["earnings"] = trader_data.earnings.sum() | |
agg_metrics["nr_trades"] = len(trader_data) | |
total_fee_amounts = trader_data.mech_fee_amount.sum() | |
total_costs = ( | |
total_bet_amounts | |
+ total_fee_amounts | |
+ (total_num_mech_calls * DEFAULT_MECH_FEE) | |
) | |
agg_metrics["roi"] = total_net_earnings / total_costs | |
return agg_metrics | |
def compute_trader_metrics_by_market_creator( | |
trader_address: str, | |
traders_data: pd.DataFrame, | |
market_creator: str = "all", | |
live_metrics: bool = False, | |
) -> dict: | |
"""This function computes for a specific time window (week or day) the different metrics: | |
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades. | |
The global roi of the trader agent by computing the individual net profit and the individual costs values | |
achieved per market and dividing both. | |
It is possible to filter by market creator: quickstart, pearl, all""" | |
assert "market_creator" in traders_data.columns | |
filtered_traders_data = traders_data.loc[ | |
traders_data["trader_address"] == trader_address | |
] | |
if market_creator != "all": # compute only for the specific market creator | |
filtered_traders_data = filtered_traders_data.loc[ | |
filtered_traders_data["market_creator"] == market_creator | |
] | |
if len(filtered_traders_data) == 0: | |
# tqdm.write(f"No data. Skipping market creator {market_creator}") | |
return {} # No Data | |
metrics = compute_metrics(trader_address, filtered_traders_data, live_metrics) | |
return metrics | |
def compute_trader_metrics_by_trader_family( | |
trader_address: str, traders_data: pd.DataFrame, trader_family: str = "all" | |
) -> dict: | |
"""This function computes for a specific time window (week or day) the different metrics: | |
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades. | |
The global roi of the trader agent by computing the individual net profit and the individual costs values | |
achieved per market and dividing both. | |
It is possible to filter by trader family: quickstart_agent, pearl_agent, non_agent, all | |
""" | |
assert "trader_family" in traders_data.columns | |
filtered_traders_data = traders_data.loc[ | |
traders_data["trader_address"] == trader_address | |
] | |
if trader_family != "all": # compute only for the specific trader family | |
filtered_traders_data = filtered_traders_data.loc[ | |
filtered_traders_data["trader_family"] == trader_family | |
] | |
if len(filtered_traders_data) == 0: | |
# tqdm.write(f"No data. Skipping trader family {trader_family}") | |
return {} # No Data | |
metrics = compute_metrics(trader_address, filtered_traders_data) | |
return metrics | |
def merge_trader_weekly_metrics( | |
trader: str, weekly_data: pd.DataFrame, week: str | |
) -> pd.DataFrame: | |
trader_metrics = [] | |
# computation as specification 1 for all types of markets | |
weekly_metrics_all = compute_trader_metrics_by_market_creator( | |
trader, weekly_data, market_creator="all" | |
) | |
weekly_metrics_all["month_year_week"] = week | |
weekly_metrics_all["market_creator"] = "all" | |
trader_metrics.append(weekly_metrics_all) | |
# computation as specification 1 for quickstart markets | |
weekly_metrics_qs = compute_trader_metrics_by_market_creator( | |
trader, weekly_data, market_creator="quickstart" | |
) | |
if len(weekly_metrics_qs) > 0: | |
weekly_metrics_qs["month_year_week"] = week | |
weekly_metrics_qs["market_creator"] = "quickstart" | |
trader_metrics.append(weekly_metrics_qs) | |
# computation as specification 1 for pearl markets | |
weekly_metrics_pearl = compute_trader_metrics_by_market_creator( | |
trader, weekly_data, market_creator="pearl" | |
) | |
if len(weekly_metrics_pearl) > 0: | |
weekly_metrics_pearl["month_year_week"] = week | |
weekly_metrics_pearl["market_creator"] = "pearl" | |
trader_metrics.append(weekly_metrics_pearl) | |
result = pd.DataFrame.from_dict(trader_metrics, orient="columns") | |
return result | |
def merge_trader_daily_metrics( | |
trader: str, daily_data: pd.DataFrame, day: str, live_metrics: bool = False | |
) -> pd.DataFrame: | |
trader_metrics = [] | |
# computation as specification 1 for all types of markets | |
daily_metrics_all = compute_trader_metrics_by_market_creator( | |
trader, daily_data, market_creator="all", live_metrics=live_metrics | |
) | |
daily_metrics_all["creation_date"] = day | |
# staking label is at the trader level | |
daily_metrics_all["market_creator"] = "all" | |
trader_metrics.append(daily_metrics_all) | |
# computation as specification 1 for quickstart markets | |
daily_metrics_qs = compute_trader_metrics_by_market_creator( | |
trader, daily_data, market_creator="quickstart", live_metrics=live_metrics | |
) | |
if len(daily_metrics_qs) > 0: | |
daily_metrics_qs["creation_date"] = day | |
daily_metrics_qs["market_creator"] = "quickstart" | |
trader_metrics.append(daily_metrics_qs) | |
# computation as specification 1 for pearl markets | |
daily_metrics_pearl = compute_trader_metrics_by_market_creator( | |
trader, daily_data, market_creator="pearl", live_metrics=live_metrics | |
) | |
if len(daily_metrics_pearl) > 0: | |
daily_metrics_pearl["creation_date"] = day | |
daily_metrics_pearl["market_creator"] = "pearl" | |
trader_metrics.append(daily_metrics_pearl) | |
result = pd.DataFrame.from_dict(trader_metrics, orient="columns") | |
return result | |
def win_metrics_trader_level(weekly_data): | |
winning_trades = ( | |
weekly_data.groupby( | |
["month_year_week", "market_creator", "trader_address"], sort=False | |
)["winning_trade"].sum() | |
/ weekly_data.groupby( | |
["month_year_week", "market_creator", "trader_address"], sort=False | |
)["winning_trade"].count() | |
* 100 | |
) | |
# winning_trades is a series, give it a dataframe | |
winning_trades = winning_trades.reset_index() | |
winning_trades.columns = winning_trades.columns.astype(str) | |
winning_trades.rename(columns={"winning_trade": "winning_perc"}, inplace=True) | |
return winning_trades | |
def compute_weekly_metrics_by_market_creator( | |
trader_agents_data: pd.DataFrame, trader_filter: str = None | |
) -> pd.DataFrame: | |
"""Function to compute the metrics at the trader level per week | |
and with different categories by market creator""" | |
contents = [] | |
all_weeks = list(trader_agents_data.month_year_week.unique()) | |
for week in all_weeks: | |
weekly_data = trader_agents_data.loc[ | |
trader_agents_data["month_year_week"] == week | |
] | |
print(f"Computing weekly metrics for week ={week} by market creator") | |
# traverse each trader agent | |
traders = list(weekly_data.trader_address.unique()) | |
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"): | |
if trader_filter is None: | |
contents.append(merge_trader_weekly_metrics(trader, weekly_data, week)) | |
elif trader_filter == "agent": | |
filtered_data = weekly_data.loc[weekly_data["staking"] != "non_agent"] | |
contents.append( | |
merge_trader_weekly_metrics(trader, filtered_data, week) | |
) | |
else: # non_agent traders | |
filtered_data = weekly_data.loc[weekly_data["staking"] == "non_agent"] | |
contents.append( | |
merge_trader_weekly_metrics(trader, filtered_data, week) | |
) | |
print("End computing all weekly metrics by market creator") | |
return pd.concat(contents, ignore_index=True) | |
def compute_daily_metrics_by_market_creator( | |
trader_agents_data: pd.DataFrame, | |
trader_filter: str = None, | |
live_metrics: bool = False, | |
) -> pd.DataFrame: | |
"""Function to compute the metrics at the trader level per day | |
and with different categories by market creator""" | |
contents = [] | |
all_days = list(trader_agents_data.creation_date.unique()) | |
for day in all_days: | |
daily_data = trader_agents_data.loc[trader_agents_data["creation_date"] == day] | |
print(f"Computing daily metrics for {day}") | |
# traverse each trader agent | |
traders = list(daily_data.trader_address.unique()) | |
for trader in tqdm(traders, desc=f"Trader' daily metrics", unit="metrics"): | |
if trader_filter is None: | |
contents.append( | |
merge_trader_daily_metrics(trader, daily_data, day, live_metrics) | |
) | |
elif trader_filter == "agentic": | |
filtered_data = daily_data.loc[daily_data["staking"] != "non_agent"] | |
contents.append( | |
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics) | |
) | |
else: # non_agent traders | |
filtered_data = daily_data.loc[daily_data["staking"] == "non_agent"] | |
contents.append( | |
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics) | |
) | |
print("End computing all daily metrics by market creator") | |
return pd.concat(contents, ignore_index=True) | |
def compute_winning_metrics_by_trader( | |
trader_agents_data: pd.DataFrame, trader_filter: str = None | |
) -> pd.DataFrame: | |
"""Function to compute the winning metrics at the trader level per week and with different market creators""" | |
market_all = trader_agents_data.copy(deep=True) | |
market_all["market_creator"] = "all" | |
# merging both dataframes | |
final_traders = pd.concat([market_all, trader_agents_data], ignore_index=True) | |
final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True) | |
if trader_filter == "agentic": | |
final_traders = final_traders.loc[final_traders["staking"] != "non_agent"] | |
else: # non_agent traders | |
final_traders = final_traders.loc[final_traders["staking"] == "non_agent"] | |
winning_df = win_metrics_trader_level(final_traders) | |
winning_df.head() | |
return winning_df | |