cyberosa
correcting kl_div parameters and new graph for winning perc
6154c13
raw
history blame
7.41 kB
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import duckdb
import logging
from scripts.metrics import (
compute_weekly_metrics_by_market_creator,
compute_weekly_metrics_by_trader_type,
compute_winning_metrics_by_trader,
)
from tabs.trader_plots import (
plot_trader_metrics_by_market_creator,
plot_trader_metrics_by_trader_type,
default_trader_metric,
trader_metric_choices,
get_metrics_text,
plot_winning_metric_per_trader,
)
from tabs.market_plots import plot_kl_div_per_market
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_all_data():
"""
Get parquet files from weekly stats and new generated
"""
logger.info("Getting traders data")
con = duckdb.connect(":memory:")
# Query to fetch data from all_trades_profitability.parquet
query1 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
# Query to fetch data from closed_markets_div.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/closed_markets_div.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from closed_markets_div.parquet")
con.close()
return df1, df2
def prepare_data():
all_trades, closed_markets = get_all_data()
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
# adding multi-bet variables
volume_trades_per_trader_and_market = (
all_trades.groupby(["trader_address", "title"])["roi"].count().reset_index()
)
volume_trades_per_trader_and_market.rename(
columns={"roi": "nr_trades_per_market"}, inplace=True
)
trader_agents_data = pd.merge(
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
)
# right now all traders are of the same type: singlebet
trader_agents_data["trader_type"] = "singlebet"
trader_agents_data = trader_agents_data.sort_values(
by="creation_timestamp", ascending=True
)
trader_agents_data["month_year_week"] = (
trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
)
closed_markets["month_year_week"] = (
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
)
return trader_agents_data, closed_markets
trader_agents_data, closed_markets = prepare_data()
print("trader agents data before computing metrics")
print(trader_agents_data.head())
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data
)
print("weekly metrics by market creator")
print(weekly_metrics_by_market_creator.head())
# get weekly metrics by trader type: multibet, singlebet or all.
weekly_metrics_by_trader_type = compute_weekly_metrics_by_trader_type(
trader_agents_data
)
weekly_winning_metrics = compute_winning_metrics_by_trader(
trader_agents_data=trader_agents_data
)
with demo:
gr.HTML("<h1>Trader agents monitoring dashboard </h1>")
gr.Markdown(
"This app shows the weekly performance of the trader agents in Olas Predict."
)
with gr.Tabs():
with gr.TabItem("🔥Trader Agents Dashboard"):
with gr.Row():
gr.Markdown("# Weekly metrics of trader agents by market creator")
with gr.Row():
trader_details_selector = gr.Dropdown(
label="Select a trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_metrics_by_market_creator,
)
trader_details_selector.change(
update_trader_details,
inputs=trader_details_selector,
outputs=trader_markets_plot,
)
with gr.Row():
gr.Markdown(
"# Weekly metrics for trader agents by trader type (multibet or singlebet)"
)
with gr.Row():
trader_metric_selector = gr.Dropdown(
label="Select a trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_type_plot = plot_trader_metrics_by_trader_type(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_trader_type,
)
with gr.Column(scale=1):
trader_metrics_text = get_metrics_text()
def update_trader_metric(trader_metric):
return plot_trader_metrics_by_trader_type(
metric_name=trader_metric,
traders_df=weekly_metrics_by_trader_type,
)
trader_metric_selector.change(
update_trader_metric,
inputs=trader_metric_selector,
outputs=trader_type_plot,
)
with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
with gr.Row():
gr.Markdown(
"# Weekly Kullback–Leibler divergence computed for the closed markets"
)
with gr.Row():
gr.Markdown(
"This divergence is a type of statistical distance between two probability distributions P and Q. In our case P is the probability defined by the final liquidity distribution of the market. While Q is the distribution of the final outcome."
)
with gr.Row():
with gr.Column(scale=3):
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
with gr.Column(scale=1):
metrics_text = get_metrics_text()
with gr.TabItem("🎖️Weekly winning trades % per trader"):
with gr.Row():
gr.Markdown("# Winning trades percentage from weekly trades by trader")
with gr.Row():
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)
demo.queue(default_concurrency_limit=40).launch()