File size: 13,314 Bytes
3ed8c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_trades[\"creation_date\"] = all_trades[\"creation_timestamp\"].dt.date"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_38171/1825242321.py:6: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
      "  all_trades[\"creation_timestamp\"].dt.to_period(\"W\").dt.strftime(\"%b-%d\")\n"
     ]
    }
   ],
   "source": [
    "all_trades = all_trades.sort_values(\n",
    "    by=\"creation_timestamp\", ascending=True\n",
    ")\n",
    "\n",
    "all_trades[\"month_year_week\"] = (\n",
    "    all_trades[\"creation_timestamp\"].dt.to_period(\"W\").dt.strftime(\"%b-%d\")\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_winning_metric_per_trader_per_market_creator(\n",
    "    trader_address: str, week_traders_data: pd.DataFrame, market_creator: str = \"all\"\n",
    ") -> float:\n",
    "    assert \"market_creator\" in week_traders_data.columns\n",
    "    filtered_traders_data = week_traders_data.loc[\n",
    "        week_traders_data[\"trader_address\"] == trader_address\n",
    "    ]\n",
    "    if market_creator != \"all\":  # compute only for the specific market creator\n",
    "        filtered_traders_data = filtered_traders_data.loc[\n",
    "            filtered_traders_data[\"market_creator\"] == market_creator\n",
    "        ]\n",
    "        if len(filtered_traders_data) == 0:\n",
    "            return None  # No Data\n",
    "    winning_perc = (\n",
    "        filtered_traders_data[\"winning_trade\"].sum()\n",
    "        / filtered_traders_data[\"winning_trade\"].count()\n",
    "        * 100.0\n",
    "    )\n",
    "    return winning_perc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def merge_winning_metrics_by_trader(\n",
    "    trader: str, weekly_data: pd.DataFrame, week: str\n",
    ") -> pd.DataFrame:\n",
    "    trader_metrics = []\n",
    "    # computation as specification 1 for all market creators\n",
    "    winning_metrics_all = {}\n",
    "    winning_metric_all = compute_winning_metric_per_trader_per_market_creator(\n",
    "        trader, weekly_data, market_creator=\"all\"\n",
    "    )\n",
    "    winning_metrics_all[\"winning_perc\"] = winning_metric_all\n",
    "    winning_metrics_all[\"month_year_week\"] = week\n",
    "    winning_metrics_all[\"market_creator\"] = \"all\"\n",
    "    trader_metrics.append(winning_metrics_all)\n",
    "    if week == \"Jul-21\":\n",
    "        print(f\"trader = {trader}, win_perc for all ={winning_metric_all}\")\n",
    "\n",
    "    # computation as specification 1 for quickstart markets\n",
    "    winning_metrics_qs = {}\n",
    "    winning_metric = compute_winning_metric_per_trader_per_market_creator(\n",
    "        trader, weekly_data, market_creator=\"quickstart\"\n",
    "    )\n",
    "    if winning_metric:\n",
    "        winning_metrics_qs[\"winning_perc\"] = winning_metric\n",
    "        winning_metrics_qs[\"month_year_week\"] = week\n",
    "        winning_metrics_qs[\"market_creator\"] = \"quickstart\"\n",
    "        trader_metrics.append(winning_metrics_qs)\n",
    "\n",
    "    # computation as specification 1 for pearl markets\n",
    "    winning_metrics_pearl = {}\n",
    "    winning_metric = compute_winning_metric_per_trader_per_market_creator(\n",
    "        trader, weekly_data, market_creator=\"pearl\"\n",
    "    )\n",
    "    if winning_metric:\n",
    "        winning_metrics_pearl[\"winning_perc\"] = winning_metric\n",
    "        winning_metrics_pearl[\"month_year_week\"] = week\n",
    "        winning_metrics_pearl[\"market_creator\"] = \"pearl\"\n",
    "        trader_metrics.append(winning_metrics_pearl)\n",
    "\n",
    "    result = pd.DataFrame.from_dict(trader_metrics, orient=\"columns\")\n",
    "    # tqdm.write(f\"Total length of all winning metrics for this week = {len(result)}\")\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "def win_metrics_trader_level(weekly_data):\n",
    "    winning_trades = (\n",
    "        weekly_data.groupby([\"month_year_week\", \"market_creator\",\"trader_address\"], sort=False)[\n",
    "            \"winning_trade\"\n",
    "        ].sum()\n",
    "        / weekly_data.groupby([\"month_year_week\", \"market_creator\",\"trader_address\"], sort=False)[\n",
    "            \"winning_trade\"\n",
    "        ].count()\n",
    "        * 100\n",
    "    )\n",
    "    # winning_trades is a series, give it a dataframe\n",
    "    winning_trades = winning_trades.reset_index()\n",
    "    winning_trades.columns = winning_trades.columns.astype(str)\n",
    "    winning_trades.columns = [\"month_year_week\", \"market_creator\", \"trader_address\", \"winning_trade\"]\n",
    "    winning_trades.rename(columns={\"winning_trade\": \"winning_perc\"})\n",
    "    return winning_trades"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>month_year_week</th>\n",
       "      <th>market_creator</th>\n",
       "      <th>trader_address</th>\n",
       "      <th>winning_trade</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>all</td>\n",
       "      <td>0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57</td>\n",
       "      <td>33.333333</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>quickstart</td>\n",
       "      <td>0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57</td>\n",
       "      <td>33.333333</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>quickstart</td>\n",
       "      <td>0xf089874165be0377680683fd5187a058dea82683</td>\n",
       "      <td>100.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>all</td>\n",
       "      <td>0xf089874165be0377680683fd5187a058dea82683</td>\n",
       "      <td>100.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>quickstart</td>\n",
       "      <td>0x49f4e3d8edc85efda9b0a36d96e406a59b13fcc2</td>\n",
       "      <td>50.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "  month_year_week market_creator                              trader_address  \\\n",
       "0          Jul-21            all  0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57   \n",
       "1          Jul-21     quickstart  0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57   \n",
       "2          Jul-21     quickstart  0xf089874165be0377680683fd5187a058dea82683   \n",
       "3          Jul-21            all  0xf089874165be0377680683fd5187a058dea82683   \n",
       "4          Jul-21     quickstart  0x49f4e3d8edc85efda9b0a36d96e406a59b13fcc2   \n",
       "\n",
       "   winning_trade  \n",
       "0      33.333333  \n",
       "1      33.333333  \n",
       "2     100.000000  \n",
       "3     100.000000  \n",
       "4      50.000000  "
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from tqdm import tqdm\n",
    "\n",
    "market_all = all_trades.copy(deep=True)\n",
    "market_all[\"market_creator\"] = \"all\"\n",
    "\n",
    "# merging both dataframes\n",
    "final_traders = pd.concat([market_all, all_trades], ignore_index=True)\n",
    "final_traders = final_traders.sort_values(\n",
    "        by=\"creation_timestamp\", ascending=True)\n",
    "\n",
    "\n",
    "winning_df = win_metrics_trader_level(final_traders)\n",
    "winning_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "winning_df = compute_winning_metrics_by_trader(all_trades)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "winning_pearl = winning_df.loc[winning_df[\"market_creator\"]==\"pearl\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>month_year_week</th>\n",
       "      <th>market_creator</th>\n",
       "      <th>trader_address</th>\n",
       "      <th>winning_trade</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>pearl</td>\n",
       "      <td>0xe283e408c6017447da9fe092d52c386753699680</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>pearl</td>\n",
       "      <td>0x913dedfcfb335a49509b67acb3b1ab2612a5c0c9</td>\n",
       "      <td>100.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>pearl</td>\n",
       "      <td>0x1b9e28e7f817e1312636a485f31cca8a4be61fac</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>33</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>pearl</td>\n",
       "      <td>0xe0113a139f591efa8bf5e19308c7c27199682d77</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>37</th>\n",
       "      <td>Jul-21</td>\n",
       "      <td>pearl</td>\n",
       "      <td>0x66a022b113b41e08d90cfd9468b8b6565d6ea995</td>\n",
       "      <td>100.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   month_year_week market_creator                              trader_address  \\\n",
       "7           Jul-21          pearl  0xe283e408c6017447da9fe092d52c386753699680   \n",
       "29          Jul-21          pearl  0x913dedfcfb335a49509b67acb3b1ab2612a5c0c9   \n",
       "30          Jul-21          pearl  0x1b9e28e7f817e1312636a485f31cca8a4be61fac   \n",
       "33          Jul-21          pearl  0xe0113a139f591efa8bf5e19308c7c27199682d77   \n",
       "37          Jul-21          pearl  0x66a022b113b41e08d90cfd9468b8b6565d6ea995   \n",
       "\n",
       "    winning_trade  \n",
       "7             0.0  \n",
       "29          100.0  \n",
       "30            0.0  \n",
       "33            0.0  \n",
       "37          100.0  "
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "winning_pearl.head()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hf_dashboards",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}