File size: 6,325 Bytes
d8cf478
 
 
 
 
 
 
 
 
 
6154c13
d8cf478
 
 
 
 
 
52d1750
6154c13
dc11fb3
d8cf478
 
3f72b8c
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
52d1750
 
 
 
 
 
 
 
d8cf478
 
52d1750
d8cf478
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d1750
 
 
 
 
d8cf478
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
d41146f
 
 
6154c13
 
 
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
52d1750
 
 
dc11fb3
52d1750
 
 
12536a4
52d1750
 
12536a4
dc11fb3
330cbe3
 
 
 
dc11fb3
6154c13
 
 
dc11fb3
 
6154c13
330cbe3
6154c13
d8cf478
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import duckdb
import logging


from scripts.metrics import (
    compute_weekly_metrics_by_market_creator,
    compute_weekly_metrics_by_trader_type,
    compute_winning_metrics_by_trader,
)
from tabs.trader_plots import (
    plot_trader_metrics_by_market_creator,
    plot_trader_metrics_by_trader_type,
    default_trader_metric,
    trader_metric_choices,
    get_metrics_text,
    plot_winning_metric_per_trader,
    get_interpretation_text,
)

from tabs.market_plots import (
    plot_kl_div_per_market,
)


def get_logger():
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.DEBUG)
    # stream handler and formatter
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    return logger


logger = get_logger()


def get_all_data():
    """
    Get parquet files from weekly stats and new generated
    """
    logger.info("Getting traders data")
    con = duckdb.connect(":memory:")
    # Query to fetch data from all_trades_profitability.parquet
    query1 = f"""
    SELECT *
    FROM read_parquet('./data/all_trades_profitability.parquet')
    """
    df1 = con.execute(query1).fetchdf()
    logger.info("Got all data from all_trades_profitability.parquet")

    # Query to fetch data from closed_markets_div.parquet
    query2 = f"""
    SELECT *
    FROM read_parquet('./data/closed_markets_div.parquet')
    """
    df2 = con.execute(query2).fetchdf()
    logger.info("Got all data from closed_markets_div.parquet")

    con.close()

    return df1, df2


def prepare_data():

    all_trades, closed_markets = get_all_data()

    all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date

    # adding multi-bet variables
    volume_trades_per_trader_and_market = (
        all_trades.groupby(["trader_address", "title"])["roi"].count().reset_index()
    )
    volume_trades_per_trader_and_market.rename(
        columns={"roi": "nr_trades_per_market"}, inplace=True
    )

    trader_agents_data = pd.merge(
        all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
    )
    # right now all traders are of the same type: singlebet
    trader_agents_data["trader_type"] = "singlebet"

    trader_agents_data = trader_agents_data.sort_values(
        by="creation_timestamp", ascending=True
    )

    trader_agents_data["month_year_week"] = (
        trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
    )

    closed_markets["month_year_week"] = (
        closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
    )
    return trader_agents_data, closed_markets


trader_agents_data, closed_markets = prepare_data()
print("trader agents data before computing metrics")
print(trader_agents_data.head())
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
    trader_agents_data
)
print("weekly metrics by market creator")
print(weekly_metrics_by_market_creator.head())
# get weekly metrics by trader type: multibet, singlebet or all.
weekly_metrics_by_trader_type = compute_weekly_metrics_by_trader_type(
    trader_agents_data
)
weekly_winning_metrics = compute_winning_metrics_by_trader(
    trader_agents_data=trader_agents_data
)
with demo:
    gr.HTML("<h1>Trader agents monitoring dashboard </h1>")
    gr.Markdown(
        "This app shows the weekly performance of the trader agents in Olas Predict."
    )

    with gr.Tabs():
        with gr.TabItem("🔥Trader Agents Dashboard"):
            with gr.Row():
                gr.Markdown("# Weekly metrics of trader agents by market creator")
            with gr.Row():
                trader_details_selector = gr.Dropdown(
                    label="Select a trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trader_markets_plot = plot_trader_metrics_by_market_creator(
                        metric_name=default_trader_metric,
                        traders_df=weekly_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_trader_details(trader_detail):
                return plot_trader_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=weekly_metrics_by_market_creator,
                )

            trader_details_selector.change(
                update_trader_details,
                inputs=trader_details_selector,
                outputs=trader_markets_plot,
            )

        with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
            with gr.Row():
                gr.Markdown(
                    "# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
                )
            with gr.Row():
                gr.Markdown(
                    "Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
                )
            with gr.Row():
                trade_details_text = get_metrics_text()
            with gr.Row():
                with gr.Column(scale=3):
                    kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
                with gr.Column(scale=1):
                    interpretation = get_interpretation_text()

        with gr.TabItem("🎖️Weekly winning trades % per trader"):
            with gr.Row():
                gr.Markdown("# Winning trades percentage from weekly trades by trader")
            with gr.Row():
                metrics_text = get_metrics_text()
            with gr.Row():

                winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)

demo.queue(default_concurrency_limit=40).launch()