File size: 7,867 Bytes
d8cf478 52d1750 d8cf478 d41146f d8cf478 d41146f d8cf478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import pandas as pd
from tqdm import tqdm
DEFAULT_MECH_FEE = 0.01 # xDAI
def compute_metrics(trader_address: str, trader_data: pd.DataFrame) -> dict:
if len(trader_data) == 0:
print("No data to compute metrics")
return {}
weekly_metrics = {}
weekly_metrics["trader_address"] = trader_address
total_net_earnings = trader_data.net_earnings.sum()
total_bet_amounts = trader_data.collateral_amount.sum()
total_num_mech_calls = trader_data.num_mech_calls.sum()
weekly_metrics["net_earnings"] = total_net_earnings
weekly_metrics["earnings"] = trader_data.earnings.sum()
weekly_metrics["bet_amount"] = total_bet_amounts
weekly_metrics["nr_mech_calls"] = total_num_mech_calls
total_fee_amounts = trader_data.mech_fee_amount.sum()
total_costs = (
total_bet_amounts
+ total_fee_amounts
+ (total_num_mech_calls * DEFAULT_MECH_FEE)
)
weekly_metrics["roi"] = total_net_earnings / total_costs
return weekly_metrics
def compute_trader_metrics_by_trader_type(
trader_address: str, week_traders_data: pd.DataFrame, trader_type: str = "all"
) -> pd.DataFrame:
"""This function computes for a specific week the different metrics: roi, net_earnings, earnings, bet_amount, nr_mech_calls.
The global roi of the trader agent by computing the individual net profit and the indivicual costs values
achieved per market and dividing both.
It is possible to filter by trader type: multibet, singlebet, all"""
assert "trader_type" in week_traders_data.columns
filtered_traders_data = week_traders_data.loc[
week_traders_data["trader_address"] == trader_address
]
if trader_type != "all": # compute only for the specific type
filtered_traders_data = filtered_traders_data.loc[
filtered_traders_data["trader_type"] == trader_type
]
if len(filtered_traders_data) == 0:
return pd.DataFrame() # No Data
return compute_metrics(trader_address, filtered_traders_data)
def compute_trader_metrics_by_market_creator(
trader_address: str, week_traders_data: pd.DataFrame, market_creator: str = "all"
) -> dict:
"""This function computes for a specific week the different metrics: roi, net_earnings, earnings, bet_amount, nr_mech_calls.
The global roi of the trader agent by computing the individual net profit and the indivicual costs values
achieved per market and dividing both.
It is possible to filter by market creator: quickstart, pearl, all"""
assert "market_creator" in week_traders_data.columns
filtered_traders_data = week_traders_data.loc[
week_traders_data["trader_address"] == trader_address
]
if market_creator != "all": # compute only for the specific market creator
filtered_traders_data = filtered_traders_data.loc[
filtered_traders_data["market_creator"] == market_creator
]
if len(filtered_traders_data) == 0:
tqdm.write(f"No data. Skipping market creator {market_creator}")
return {} # No Data
# tqdm.write(
# f"Volume of data for trader {trader_address} and market creator {market_creator} = {len(filtered_traders_data)}"
# )
metrics = compute_metrics(trader_address, filtered_traders_data)
return metrics
def merge_trader_metrics(
trader: str, weekly_data: pd.DataFrame, week: str
) -> pd.DataFrame:
trader_metrics = []
# computation as specification 1 for all types of markets
weekly_metrics_all = compute_trader_metrics_by_market_creator(
trader, weekly_data, market_creator="all"
)
weekly_metrics_all["month_year_week"] = week
weekly_metrics_all["market_creator"] = "all"
trader_metrics.append(weekly_metrics_all)
# computation as specification 1 for quickstart markets
weekly_metrics_qs = compute_trader_metrics_by_market_creator(
trader, weekly_data, market_creator="quickstart"
)
if len(weekly_metrics_qs) > 0:
weekly_metrics_qs["month_year_week"] = week
weekly_metrics_qs["market_creator"] = "quickstart"
trader_metrics.append(weekly_metrics_qs)
# computation as specification 1 for pearl markets
weekly_metrics_pearl = compute_trader_metrics_by_market_creator(
trader, weekly_data, market_creator="pearl"
)
if len(weekly_metrics_pearl) > 0:
weekly_metrics_pearl["month_year_week"] = week
weekly_metrics_pearl["market_creator"] = "pearl"
trader_metrics.append(weekly_metrics_pearl)
result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
# tqdm.write(f"Total length of all trader metrics for this week = {len(result)}")
return result
def merge_trader_metrics_by_type(
trader: str, weekly_data: pd.DataFrame, week: str
) -> pd.DataFrame:
trader_metrics = []
# computation as specification 1 for all types of traders
weekly_metrics_all = compute_trader_metrics_by_trader_type(
trader, weekly_data, trader_type="all"
)
weekly_metrics_all["month_year_week"] = week
weekly_metrics_all["trader_type"] = "all"
trader_metrics.append(weekly_metrics_all)
# computation as specification 1 for multibet traders
weekly_metrics_mb = compute_trader_metrics_by_trader_type(
trader, weekly_data, trader_type="multibet"
)
if len(weekly_metrics_mb) > 0:
weekly_metrics_mb["month_year_week"] = week
weekly_metrics_mb["trader_type"] = "multibet"
trader_metrics.append(weekly_metrics_mb)
# computation as specification 1 for singlebet traders
weekly_metrics_sb = compute_trader_metrics_by_trader_type(
trader, weekly_data, trader_type="singlebet"
)
if len(weekly_metrics_sb) > 0:
weekly_metrics_sb["month_year_week"] = week
weekly_metrics_sb["trader_type"] = "singlebet"
trader_metrics.append(weekly_metrics_sb)
result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
# tqdm.write(f"Total length of all trader metrics for this week = {len(result)}")
return result
def compute_weekly_metrics_by_market_creator(
trader_agents_data: pd.DataFrame,
) -> pd.DataFrame:
"""Function to compute the metrics at the trader level per week and with different categories by market creator"""
contents = []
all_weeks = list(trader_agents_data.month_year_week.unique())
for week in all_weeks:
weekly_data = trader_agents_data.loc[
trader_agents_data["month_year_week"] == week
]
print(f"Computing weekly metrics for week ={week} by market creator")
# traverse each trader agent
traders = list(weekly_data.trader_address.unique())
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
contents.append(merge_trader_metrics(trader, weekly_data, week))
print("End computing all weekly metrics by market creator")
return pd.concat(contents, ignore_index=True)
def compute_weekly_metrics_by_trader_type(
trader_agents_data: pd.DataFrame,
) -> pd.DataFrame:
"""Function to compute the metrics at the trader level per week and with different types of traders"""
contents = []
all_weeks = list(trader_agents_data.month_year_week.unique())
for week in all_weeks:
weekly_data = trader_agents_data.loc[
trader_agents_data["month_year_week"] == week
]
print(f"Computing weekly metrics for week ={week} by trader type")
# traverse each trader agent
traders = list(weekly_data.trader_address.unique())
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
contents.append(merge_trader_metrics_by_type(trader, weekly_data, week))
print("End computing all weekly metrics by trader types")
return pd.concat(contents, ignore_index=True)
|