File size: 10,678 Bytes
330cbe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/cyberosa/.pyenv/versions/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import gradio as gr\n",
    "import plotly.express as px\n",
    "import plotly.graph_objects as go\n",
    "from plotly.subplots import make_subplots\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>currentAnswer</th>\n",
       "      <th>id</th>\n",
       "      <th>openingTimestamp</th>\n",
       "      <th>market_creator</th>\n",
       "      <th>opening_datetime</th>\n",
       "      <th>first_outcome_prob</th>\n",
       "      <th>second_outcome_prob</th>\n",
       "      <th>kl_divergence</th>\n",
       "      <th>off_by_perc</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>315</th>\n",
       "      <td>no</td>\n",
       "      <td>0x29462bf8c8f24772cd6da03878a4aee5c5813474</td>\n",
       "      <td>1724976000</td>\n",
       "      <td>pearl</td>\n",
       "      <td>2024-08-30 02:00:00</td>\n",
       "      <td>0.9416</td>\n",
       "      <td>0.0584</td>\n",
       "      <td>2.840439</td>\n",
       "      <td>94.16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>323</th>\n",
       "      <td>yes</td>\n",
       "      <td>0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e3</td>\n",
       "      <td>1724976000</td>\n",
       "      <td>quickstart</td>\n",
       "      <td>2024-08-30 02:00:00</td>\n",
       "      <td>0.0499</td>\n",
       "      <td>0.9501</td>\n",
       "      <td>2.997734</td>\n",
       "      <td>95.01</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    currentAnswer                                          id  \\\n",
       "315            no  0x29462bf8c8f24772cd6da03878a4aee5c5813474   \n",
       "323           yes  0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e3   \n",
       "\n",
       "    openingTimestamp market_creator    opening_datetime  first_outcome_prob  \\\n",
       "315       1724976000          pearl 2024-08-30 02:00:00              0.9416   \n",
       "323       1724976000     quickstart 2024-08-30 02:00:00              0.0499   \n",
       "\n",
       "     second_outcome_prob  kl_divergence  off_by_perc  \n",
       "315               0.0584       2.840439        94.16  \n",
       "323               0.9501       2.997734        95.01  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "div_data.loc[div_data[\"off_by_perc\"]>=90]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>currentAnswer</th>\n",
       "      <th>id</th>\n",
       "      <th>openingTimestamp</th>\n",
       "      <th>market_creator</th>\n",
       "      <th>opening_datetime</th>\n",
       "      <th>first_outcome_prob</th>\n",
       "      <th>second_outcome_prob</th>\n",
       "      <th>kl_divergence</th>\n",
       "      <th>off_by_perc</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>52</th>\n",
       "      <td>no</td>\n",
       "      <td>0x927beda324bfd4514a7b64ab5594451fdaf4796e</td>\n",
       "      <td>1722816000</td>\n",
       "      <td>quickstart</td>\n",
       "      <td>2024-08-05 02:00:00</td>\n",
       "      <td>0.8792</td>\n",
       "      <td>0.1208</td>\n",
       "      <td>2.113619</td>\n",
       "      <td>87.92</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>293</th>\n",
       "      <td>yes</td>\n",
       "      <td>0x90bb15982f2b5a5f044ad8ff49fe20daddfb8ca7</td>\n",
       "      <td>1724803200</td>\n",
       "      <td>quickstart</td>\n",
       "      <td>2024-08-28 02:00:00</td>\n",
       "      <td>0.1166</td>\n",
       "      <td>0.8834</td>\n",
       "      <td>2.149006</td>\n",
       "      <td>88.34</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>315</th>\n",
       "      <td>no</td>\n",
       "      <td>0x29462bf8c8f24772cd6da03878a4aee5c5813474</td>\n",
       "      <td>1724976000</td>\n",
       "      <td>pearl</td>\n",
       "      <td>2024-08-30 02:00:00</td>\n",
       "      <td>0.9416</td>\n",
       "      <td>0.0584</td>\n",
       "      <td>2.840439</td>\n",
       "      <td>94.16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>323</th>\n",
       "      <td>yes</td>\n",
       "      <td>0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e3</td>\n",
       "      <td>1724976000</td>\n",
       "      <td>quickstart</td>\n",
       "      <td>2024-08-30 02:00:00</td>\n",
       "      <td>0.0499</td>\n",
       "      <td>0.9501</td>\n",
       "      <td>2.997734</td>\n",
       "      <td>95.01</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    currentAnswer                                          id  \\\n",
       "52             no  0x927beda324bfd4514a7b64ab5594451fdaf4796e   \n",
       "293           yes  0x90bb15982f2b5a5f044ad8ff49fe20daddfb8ca7   \n",
       "315            no  0x29462bf8c8f24772cd6da03878a4aee5c5813474   \n",
       "323           yes  0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e3   \n",
       "\n",
       "    openingTimestamp market_creator    opening_datetime  first_outcome_prob  \\\n",
       "52        1722816000     quickstart 2024-08-05 02:00:00              0.8792   \n",
       "293       1724803200     quickstart 2024-08-28 02:00:00              0.1166   \n",
       "315       1724976000          pearl 2024-08-30 02:00:00              0.9416   \n",
       "323       1724976000     quickstart 2024-08-30 02:00:00              0.0499   \n",
       "\n",
       "     second_outcome_prob  kl_divergence  off_by_perc  \n",
       "52                0.1208       2.113619        87.92  \n",
       "293               0.8834       2.149006        88.34  \n",
       "315               0.0584       2.840439        94.16  \n",
       "323               0.9501       2.997734        95.01  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "div_data.loc[div_data[\"kl_divergence\"]>=2.0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_markets = closed_markets.copy(deep=True)\n",
    "    all_markets[\"market_creator\"] = \"all\"\n",
    "\n",
    "    # merging both dataframes\n",
    "    final_markets = pd.concat([div_data, all_markets], ignore_index=True)\n",
    "    final_markets = final_markets.sort_values(by=\"opening_datetime\", ascending=True)\n",
    "\n",
    "    # Create the main figure and axis\n",
    "    fig, ax1 = plt.subplots(figsize=(10, 6))\n",
    "\n",
    "    # Create the boxplot using seaborn\n",
    "    sns.boxplot(\n",
    "        data=closed_markets,\n",
    "        x=\"month_year_week\",\n",
    "        y=\"kl_divergence\",\n",
    "        ax=ax1,\n",
    "        hue=\"market_creator\",\n",
    "        order=[\"pearl\", \"quickstart\", \"all\"],\n",
    "    )\n",
    "\n",
    "    # Set labels and title for the main axis\n",
    "    ax1.set_xlabel(\"Week\")\n",
    "    ax1.set_ylabel(\"KL Divergence\")\n",
    "    ax1.set_title(\"KL Divergence Boxplot with Off-by Percentage\")\n",
    "\n",
    "    # Create a secondary y-axis\n",
    "    ax2 = ax1.twinx()\n",
    "\n",
    "    # Plot the off_by_perc values on the secondary y-axis\n",
    "    for i, week in enumerate(closed_markets[\"month_year_week\"].unique()):\n",
    "        off_by_perc = closed_markets[closed_markets[\"month_year_week\"] == week][\n",
    "            \"off_by_perc\"\n",
    "        ]\n",
    "        ax2.scatter([i] * len(off_by_perc), off_by_perc, color=\"red\", alpha=0.01)\n",
    "\n",
    "    # Set label for the secondary y-axis\n",
    "    ax2.set_ylabel(\"Off-by Percentage\")\n",
    "\n",
    "    # Adjust the layout and display the plot\n",
    "    plt.tight_layout()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hf_dashboards",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}