File size: 6,581 Bytes
e2483e1
 
 
 
 
9679b78
 
e2483e1
 
 
 
9679b78
cc33185
9679b78
 
 
 
 
 
 
 
 
 
 
e2483e1
9679b78
 
 
 
 
 
 
e2483e1
9679b78
e2483e1
 
9679b78
e2483e1
 
 
6db6faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2483e1
 
9679b78
 
 
 
 
 
e2483e1
 
 
6db6faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9679b78
 
 
e2483e1
 
9679b78
 
e2483e1
 
 
 
 
 
 
 
 
9679b78
e2483e1
 
 
6db6faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2483e1
 
 
9679b78
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import pandas as pd
import gradio as gr
from typing import List


HEIGHT = 600
WIDTH = 1000


def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
    """Gets the tool winning rate data for the given tools and calculates the winning percentage."""
    tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
    # tools_inc['error'] = tools_inc.apply(set_error, axis=1)
    tools_non_error = tools_inc[tools_inc["error"] != 1]
    tools_non_error.loc[:, "currentAnswer"] = tools_non_error["currentAnswer"].replace(
        {"no": "No", "yes": "Yes"}
    )
    tools_non_error = tools_non_error[
        tools_non_error["currentAnswer"].isin(["Yes", "No"])
    ]
    tools_non_error = tools_non_error[tools_non_error["vote"].isin(["Yes", "No"])]
    tools_non_error["win"] = (
        tools_non_error["currentAnswer"] == tools_non_error["vote"]
    ).astype(int)
    tools_non_error.columns = tools_non_error.columns.astype(str)
    wins = (
        tools_non_error.groupby(["tool", "request_month_year_week", "win"])
        .size()
        .unstack()
        .fillna(0)
    )
    wins["win_perc"] = (wins[1] / (wins[0] + wins[1])) * 100
    wins.reset_index(inplace=True)
    wins["total_request"] = wins[0] + wins[1]
    wins.columns = wins.columns.astype(str)
    # Convert request_month_year_week to string and explicitly set type for Altair
    wins["request_month_year_week"] = wins["request_month_year_week"].astype(str)
    return wins


def get_tool_winning_rate_by_market(
    tools_df: pd.DataFrame, inc_tools: List[str]
) -> pd.DataFrame:
    """Gets the tool winning rate data for the given tools by market and calculates the winning percentage."""
    tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
    tools_non_error = tools_inc[tools_inc["error"] != 1]
    tools_non_error.loc[:, "currentAnswer"] = tools_non_error["currentAnswer"].replace(
        {"no": "No", "yes": "Yes"}
    )
    tools_non_error = tools_non_error[
        tools_non_error["currentAnswer"].isin(["Yes", "No"])
    ]
    tools_non_error = tools_non_error[tools_non_error["vote"].isin(["Yes", "No"])]
    tools_non_error["win"] = (
        tools_non_error["currentAnswer"] == tools_non_error["vote"]
    ).astype(int)
    tools_non_error.columns = tools_non_error.columns.astype(str)
    wins = (
        tools_non_error.groupby(
            ["tool", "request_month_year_week", "market_creator", "win"], sort=False
        )
        .size()
        .unstack()
        .fillna(0)
    )
    wins["win_perc"] = (wins[1] / (wins[0] + wins[1])) * 100
    wins.reset_index(inplace=True)
    wins["total_request"] = wins[0] + wins[1]
    wins.columns = wins.columns.astype(str)
    # Convert request_month_year_week to string and explicitly set type for Altair
    wins["request_month_year_week"] = wins["request_month_year_week"].astype(str)
    return wins


def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
    overall_wins = (
        wins_df.groupby("request_month_year_week")
        .agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
        .rename(columns={"0": "losses", "1": "wins"})
        .reset_index()
    )
    return overall_wins


def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
    overall_wins = (
        wins_df.groupby("request_month_year_week")
        .agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
        .rename(columns={"0": "losses", "1": "wins"})
        .reset_index()
    )
    return overall_wins


def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
    overall_wins = (
        wins_df.groupby(["request_month_year_week", "market_creator"], sort=False)
        .agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
        .rename(columns={"0": "losses", "1": "wins"})
        .reset_index()
    )
    return overall_wins


def plot_tool_winnings_overall(
    wins_df: pd.DataFrame, winning_selector: str = "win_perc"
) -> gr.BarPlot:
    """Plots the overall winning rate data for the given tools and calculates the winning percentage."""
    return gr.BarPlot(
        title="Winning Rate",
        x_title="Date",
        y_title=winning_selector,
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["request_month_year_week", winning_selector],
        value=wins_df,
        x="request_month_year_week",
        y=winning_selector,
        height=HEIGHT,
        width=WIDTH,
    )


def integrated_plot_tool_winnings_overall(
    tools_df: pd.DataFrame, winning_selector: str = "win_perc"
) -> gr.Plot:
    # TODO Pending final implementation
    """Plots the overall winning rate data for the given tools and calculates the winning percentage."""
    # adding the total
    wins_df_all = tools_df.copy(deep=True)
    wins_df_all["market_creator"] = "all"

    # merging both dataframes
    all_winning_tools = pd.concat([wins_df, wins_df_all], ignore_index=True)
    all_winning_tools = all_winning_tools.sort_values(
        by="creation_timestamp", ascending=True
    )
    final_df = get_overall_winning_rate_by_market(all_winning_tools)
    fig = px.bar(
        final_df,
        x="request_month_year_week",
        y=winning_selector,
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["goldenrod", "darkgreen", "purple"],
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning rate",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
    """Plots the winning rate data for the given tool."""
    return gr.BarPlot(
        title="Winning Rate",
        x_title="Week",
        y_title="Winning Rate",
        x="request_month_year_week",
        y="win_perc",
        value=wins_df[wins_df["tool"] == tool],
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["request_month_year_week", "win_perc"],
        height=HEIGHT,
        width=WIDTH,
    )