Spaces:
Sleeping
Sleeping
Valentin Buchner
commited on
Commit
Β·
089ed73
1
Parent(s):
3bc13ec
put config back on top
Browse files- README.md +11 -15
- app.py β leaderboard/app.py +2 -2
README.md
CHANGED
@@ -1,3 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data
|
2 |
|
3 |
<div>
|
@@ -53,18 +64,3 @@ The MME dataset, of which the image modality was used in our paper, can be obtai
|
|
53 |
primaryClass={cs.AI,cs.CL,cs.LG}
|
54 |
}
|
55 |
```
|
56 |
-
|
57 |
-
## HF Space config
|
58 |
-
|
59 |
-
Please dont be distracted by this content - it just configues the [π€ Leaderboard](https://huggingface.co/spaces/valbuc/GenCeption).
|
60 |
-
|
61 |
-
---
|
62 |
-
title: Genception Leaderboard
|
63 |
-
emoji: π₯
|
64 |
-
colorFrom: red
|
65 |
-
colorTo: green
|
66 |
-
sdk: gradio
|
67 |
-
sdk_version: 4.19.2
|
68 |
-
app_file: app.py
|
69 |
-
pinned: true
|
70 |
-
---
|
|
|
1 |
+
---
|
2 |
+
title: Genception Leaderboard
|
3 |
+
emoji: π₯
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
+
app_file: leaderboard/app.py
|
9 |
+
pinned: true
|
10 |
+
---
|
11 |
+
|
12 |
# GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data
|
13 |
|
14 |
<div>
|
|
|
64 |
primaryClass={cs.AI,cs.CL,cs.LG}
|
65 |
}
|
66 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py β leaderboard/app.py
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
from apscheduler.schedulers.background import BackgroundScheduler
|
2 |
-
from
|
3 |
TITLE,
|
4 |
BANNER,
|
5 |
INTRO,
|
@@ -17,7 +17,7 @@ df = pd.DataFrame()
|
|
17 |
|
18 |
def update_data():
|
19 |
global df
|
20 |
-
with open("
|
21 |
data = json.load(f)
|
22 |
df = create_dataframe(data)
|
23 |
|
|
|
1 |
from apscheduler.schedulers.background import BackgroundScheduler
|
2 |
+
from content import (
|
3 |
TITLE,
|
4 |
BANNER,
|
5 |
INTRO,
|
|
|
17 |
|
18 |
def update_data():
|
19 |
global df
|
20 |
+
with open("/leaderboard.json", "r") as f:
|
21 |
data = json.load(f)
|
22 |
df = create_dataframe(data)
|
23 |
|