Spaces:
Runtime error
Runtime error
File size: 2,292 Bytes
a12bf3c 9b4ae8f a12bf3c 9b4ae8f a12bf3c 9b4ae8f a12bf3c b702e41 9b4ae8f a12bf3c 9b4ae8f a12bf3c 9b4ae8f a12bf3c 9b4ae8f a12bf3c 9b4ae8f a12bf3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
from fastapi import FastAPI, File, UploadFile
from pydantic import BaseModel
from transformers import pipeline
from PIL import Image
import joblib
import re
import string
import io
import os
import uvicorn
# β
Set Hugging Face Cache Directory (Fixes Permission Error)
CACHE_DIR = "/tmp/hf_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
# β
Initialize FastAPI
app = FastAPI()
# β
Load NSFW Image Classification Model (with custom cache directory)
pipe = pipeline("image-classification", model="LukeJacob2023/nsfw-image-detector", cache_dir="/tmp/hf_cache")
# β
Load Toxic Text Classification Model
try:
model = joblib.load("toxic_classifier.pkl")
vectorizer = joblib.load("vectorizer.pkl")
print("β
Model & Vectorizer Loaded Successfully!")
except Exception as e:
print(f"β Error: {e}")
exit(1)
# π Text Input Data Model
class TextInput(BaseModel):
text: str
# πΉ Text Preprocessing Function
def preprocess_text(text):
text = text.lower()
text = re.sub(r'\d+', '', text) # Remove numbers
text = text.translate(str.maketrans('', '', string.punctuation)) # Remove punctuation
return text.strip()
# π NSFW Image Classification API
@app.post("/classify_image/")
async def classify_image(file: UploadFile = File(...)):
try:
image = Image.open(io.BytesIO(await file.read()))
results = pipe(image)
classification_label = max(results, key=lambda x: x['score'])['label']
nsfw_labels = {"sexy", "porn", "hentai"}
nsfw_status = "NSFW" if classification_label in nsfw_labels else "SFW"
return {"status": nsfw_status, "results": results}
except Exception as e:
return {"error": str(e)}
# π Toxic Text Classification API
@app.post("/classify_text/")
async def classify_text(data: TextInput):
try:
processed_text = preprocess_text(data.text)
text_vectorized = vectorizer.transform([processed_text])
prediction = model.predict(text_vectorized)
result = "Toxic" if prediction[0] == 1 else "Safe"
return {"prediction": result}
except Exception as e:
return {"error": str(e)}
# β
Run FastAPI using Uvicorn (Hugging Face requires port 7860)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|