vadepark commited on
Commit
32df274
·
1 Parent(s): 70f7d72

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -0
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ import detectron2
3
+ except:
4
+ import os
5
+
6
+ os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
7
+
8
+ from matplotlib.pyplot import axis
9
+ import gradio as gr
10
+ import requests
11
+ import numpy as np
12
+ from torch import nn
13
+ import requests
14
+
15
+ import torch
16
+
17
+ from detectron2 import model_zoo
18
+ from detectron2.engine import DefaultPredictor
19
+ from detectron2.config import get_cfg
20
+ from detectron2.utils.visualizer import Visualizer
21
+ from detectron2.data import MetadataCatalog
22
+
23
+ url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg'
24
+ r = requests.get(url1, allow_redirects=True)
25
+ open("city1.jpg", 'wb').write(r.content)
26
+ url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg'
27
+ r = requests.get(url2, allow_redirects=True)
28
+ open("city2.jpg", 'wb').write(r.content)
29
+
30
+ model_name = 'COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml'
31
+
32
+ # model = model_zoo.get(model_name, trained=True)
33
+
34
+ cfg = get_cfg()
35
+ # add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
36
+ cfg.merge_from_file(model_zoo.get_config_file(model_name))
37
+ cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
38
+ # Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as w ell
39
+ cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(model_name)
40
+
41
+ if not torch.cuda.is_available():
42
+ cfg.MODEL.DEVICE = 'cpu'
43
+
44
+ predictor = DefaultPredictor(cfg)
45
+
46
+
47
+ def inference(image):
48
+ img = np.array(image.resize((1024, 1024)))
49
+ outputs = predictor(img)
50
+
51
+ v = Visualizer(img, MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
52
+ out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
53
+
54
+ return out.get_image()
55
+
56
+
57
+ title = "Detectron2-MaskRCNN X101"
58
+ description = "demo for Detectron2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.\
59
+ </br><b>Model: COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml</b>"
60
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.07177'>Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation</a> | <a href='https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md'>Detectron model ZOO</a></p>"
61
+
62
+ gr.Interface(
63
+ inference,
64
+ [gr.inputs.Image(type="pil", label="Input")],
65
+ gr.outputs.Image(type="numpy", label="Output"),
66
+ title=title,
67
+ description=description,
68
+ article=article,
69
+ examples=[
70
+ ["city1.jpg"],
71
+ ["city2.jpg"]
72
+ ]).launch()