|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
import math |
|
import einops |
|
import torch |
|
from transformers import ( |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
T5EncoderModel, |
|
T5Tokenizer, |
|
LlamaForCausalLM, |
|
PreTrainedTokenizerFast |
|
) |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin |
|
from diffusers.models.autoencoders import AutoencoderKL |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_xla_available, |
|
logging, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from .pipeline_output import HiDreamImagePipelineOutput |
|
from ...models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel |
|
from ...schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def calculate_shift( |
|
image_seq_len, |
|
base_seq_len: int = 256, |
|
max_seq_len: int = 4096, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.15, |
|
): |
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
b = base_shift - m * base_seq_len |
|
mu = image_seq_len * m + b |
|
return mu |
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin): |
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae" |
|
_optional_components = ["image_encoder", "feature_extractor"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer_2: CLIPTokenizer, |
|
text_encoder_3: T5EncoderModel, |
|
tokenizer_3: T5Tokenizer, |
|
text_encoder_4: LlamaForCausalLM, |
|
tokenizer_4: PreTrainedTokenizerFast, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
text_encoder_3=text_encoder_3, |
|
text_encoder_4=text_encoder_4, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
tokenizer_3=tokenizer_3, |
|
tokenizer_4=tokenizer_4, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = ( |
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 |
|
) |
|
|
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) |
|
self.default_sample_size = 128 |
|
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token |
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 128, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder_3.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer_3( |
|
prompt, |
|
padding="max_length", |
|
max_length=min(max_sequence_length, self.tokenizer_3.model_max_length), |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.text_encoder_3.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {self.text_encoder_3.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=attention_mask.to(device))[0] |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
return prompt_embeds |
|
|
|
def _get_clip_prompt_embeds( |
|
self, |
|
tokenizer, |
|
text_encoder, |
|
prompt: Union[str, List[str]], |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 128, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=min(max_sequence_length, 218), |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {218} tokens: {removed_text}" |
|
) |
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
|
|
|
|
prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
return prompt_embeds |
|
|
|
def _get_llama3_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 128, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder_4.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer_4( |
|
prompt, |
|
padding="max_length", |
|
max_length=min(max_sequence_length, self.tokenizer_4.model_max_length), |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer_4.batch_decode(untruncated_ids[:, self.text_encoder_4.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {self.text_encoder_4.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
outputs = self.text_encoder_4( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask.to(device), |
|
output_hidden_states=True, |
|
output_attentions=True |
|
) |
|
|
|
prompt_embeds = outputs.hidden_states[1:] |
|
prompt_embeds = torch.stack(prompt_embeds, dim=0) |
|
_, _, seq_len, dim = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(-1, batch_size * num_images_per_prompt, seq_len, dim) |
|
return prompt_embeds |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]], |
|
prompt_3: Union[str, List[str]], |
|
prompt_4: Union[str, List[str]], |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_3: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_4: Optional[Union[str, List[str]]] = None, |
|
prompt_embeds: Optional[List[torch.FloatTensor]] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_sequence_length: int = 128, |
|
lora_scale: Optional[float] = None, |
|
): |
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
prompt_embeds, pooled_prompt_embeds = self._encode_prompt( |
|
prompt = prompt, |
|
prompt_2 = prompt_2, |
|
prompt_3 = prompt_3, |
|
prompt_4 = prompt_4, |
|
device = device, |
|
dtype = dtype, |
|
num_images_per_prompt = num_images_per_prompt, |
|
prompt_embeds = prompt_embeds, |
|
pooled_prompt_embeds = pooled_prompt_embeds, |
|
max_sequence_length = max_sequence_length, |
|
) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
negative_prompt_3 = negative_prompt_3 or negative_prompt |
|
negative_prompt_4 = negative_prompt_4 or negative_prompt |
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
negative_prompt_2 = ( |
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 |
|
) |
|
negative_prompt_3 = ( |
|
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 |
|
) |
|
negative_prompt_4 = ( |
|
batch_size * [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4 |
|
) |
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
|
|
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt( |
|
prompt = negative_prompt, |
|
prompt_2 = negative_prompt_2, |
|
prompt_3 = negative_prompt_3, |
|
prompt_4 = negative_prompt_4, |
|
device = device, |
|
dtype = dtype, |
|
num_images_per_prompt = num_images_per_prompt, |
|
prompt_embeds = negative_prompt_embeds, |
|
pooled_prompt_embeds = negative_pooled_prompt_embeds, |
|
max_sequence_length = max_sequence_length, |
|
) |
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]], |
|
prompt_3: Union[str, List[str]], |
|
prompt_4: Union[str, List[str]], |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
num_images_per_prompt: int = 1, |
|
prompt_embeds: Optional[List[torch.FloatTensor]] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_sequence_length: int = 128, |
|
): |
|
device = device or self._execution_device |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
prompt_3 = prompt_3 or prompt |
|
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 |
|
|
|
prompt_4 = prompt_4 or prompt |
|
prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4 |
|
|
|
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds( |
|
self.tokenizer, |
|
self.text_encoder, |
|
prompt = prompt, |
|
num_images_per_prompt = num_images_per_prompt, |
|
max_sequence_length = max_sequence_length, |
|
device = device, |
|
dtype = dtype, |
|
) |
|
|
|
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds( |
|
self.tokenizer_2, |
|
self.text_encoder_2, |
|
prompt = prompt_2, |
|
num_images_per_prompt = num_images_per_prompt, |
|
max_sequence_length = max_sequence_length, |
|
device = device, |
|
dtype = dtype, |
|
) |
|
|
|
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1) |
|
|
|
t5_prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt = prompt_3, |
|
num_images_per_prompt = num_images_per_prompt, |
|
max_sequence_length = max_sequence_length, |
|
device = device, |
|
dtype = dtype |
|
) |
|
llama3_prompt_embeds = self._get_llama3_prompt_embeds( |
|
prompt = prompt_4, |
|
num_images_per_prompt = num_images_per_prompt, |
|
max_sequence_length = max_sequence_length, |
|
device = device, |
|
dtype = dtype |
|
) |
|
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds] |
|
|
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
|
|
|
|
height = 2 * (int(height) // (self.vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (self.vae_scale_factor * 2)) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def joint_attention_kwargs(self): |
|
return self._joint_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
prompt_3: Optional[Union[str, List[str]]] = None, |
|
prompt_4: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_3: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_4: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 128, |
|
): |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
division = self.vae_scale_factor * 2 |
|
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2 |
|
scale = S_max / (width * height) |
|
scale = math.sqrt(scale) |
|
width, height = int(width * scale // division * division), int(height * scale // division * division) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_3=prompt_3, |
|
prompt_4=prompt_4, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
negative_prompt_3=negative_prompt_3, |
|
negative_prompt_4=negative_prompt_4, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds_arr = [] |
|
for n, p in zip(negative_prompt_embeds, prompt_embeds): |
|
if len(n.shape) == 3: |
|
prompt_embeds_arr.append(torch.cat([n, p], dim=0)) |
|
else: |
|
prompt_embeds_arr.append(torch.cat([n, p], dim=1)) |
|
prompt_embeds = prompt_embeds_arr |
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
pooled_prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
if latents.shape[-2] != latents.shape[-1]: |
|
B, C, H, W = latents.shape |
|
pH, pW = H // self.transformer.config.patch_size, W // self.transformer.config.patch_size |
|
|
|
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1) |
|
img_ids = torch.zeros(pH, pW, 3) |
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None] |
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :] |
|
img_ids = img_ids.reshape(pH * pW, -1) |
|
img_ids_pad = torch.zeros(self.transformer.max_seq, 3) |
|
img_ids_pad[:pH*pW, :] = img_ids |
|
|
|
img_sizes = img_sizes.unsqueeze(0).to(latents.device) |
|
img_ids = img_ids_pad.unsqueeze(0).to(latents.device) |
|
if self.do_classifier_free_guidance: |
|
img_sizes = img_sizes.repeat(2 * B, 1) |
|
img_ids = img_ids.repeat(2 * B, 1, 1) |
|
else: |
|
img_sizes = img_ids = None |
|
|
|
|
|
mu = calculate_shift(self.transformer.max_seq) |
|
scheduler_kwargs = {"mu": mu} |
|
if isinstance(self.scheduler, FlowUniPCMultistepScheduler): |
|
self.scheduler.set_timesteps(num_inference_steps, device=device, shift=math.exp(mu)) |
|
timesteps = self.scheduler.timesteps |
|
else: |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
**scheduler_kwargs, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
if latent_model_input.shape[-2] != latent_model_input.shape[-1]: |
|
B, C, H, W = latent_model_input.shape |
|
patch_size = self.transformer.config.patch_size |
|
pH, pW = H // patch_size, W // patch_size |
|
out = torch.zeros( |
|
(B, C, self.transformer.max_seq, patch_size * patch_size), |
|
dtype=latent_model_input.dtype, |
|
device=latent_model_input.device |
|
) |
|
latent_model_input = einops.rearrange(latent_model_input, 'B C (H p1) (W p2) -> B C (H W) (p1 p2)', p1=patch_size, p2=patch_size) |
|
out[:, :, 0:pH*pW] = latent_model_input |
|
latent_model_input = out |
|
|
|
noise_pred = self.transformer( |
|
hidden_states = latent_model_input, |
|
timesteps = timestep, |
|
encoder_hidden_states = prompt_embeds, |
|
pooled_embeds = pooled_prompt_embeds, |
|
img_sizes = img_sizes, |
|
img_ids = img_ids, |
|
return_dict = False, |
|
)[0] |
|
noise_pred = -noise_pred |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return HiDreamImagePipelineOutput(images=image) |