AustingDong
commited on
Commit
·
8235fd2
1
Parent(s):
4db7aa5
modified visual encoder
Browse files- app.py +70 -28
- demo/cam.py +137 -61
app.py
CHANGED
@@ -25,6 +25,7 @@ model_utils, vl_gpt, tokenizer = None, None, None
|
|
25 |
model_name = "Clip"
|
26 |
language_model_max_layer = 24
|
27 |
language_model_best_layer = 8
|
|
|
28 |
|
29 |
def clean():
|
30 |
global model_utils, vl_gpt, tokenizer, clip_utils
|
@@ -116,7 +117,10 @@ def multimodal_understanding(model_type,
|
|
116 |
if activation_map_method == "GradCAM":
|
117 |
# target_layers = vl_gpt.vision_model.vision_tower.blocks
|
118 |
if focus == "Visual Encoder":
|
119 |
-
|
|
|
|
|
|
|
120 |
else:
|
121 |
all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
|
122 |
|
@@ -137,17 +141,33 @@ def multimodal_understanding(model_type,
|
|
137 |
gradcam = AttentionGuidedCAMChartGemma(vl_gpt, target_layers)
|
138 |
|
139 |
start = 0
|
|
|
140 |
if focus == "Visual Encoder":
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
else:
|
143 |
cam_tensors, grid_size, start = gradcam.generate_cam(prepare_inputs, tokenizer, temperature, top_p, target_token_idx, visual_pooling_method, focus)
|
144 |
-
gradcam.remove_hooks()
|
145 |
-
|
146 |
-
|
147 |
-
if focus == "Visual Encoder":
|
148 |
-
cam_grid = cam_tensors.reshape(grid_size, grid_size)
|
149 |
-
cam = [generate_gradcam(cam_grid, image)]
|
150 |
-
else:
|
151 |
if target_token_idx != -1:
|
152 |
input_text_decoded = input_ids_decoded[start + target_token_idx]
|
153 |
for i, cam_tensor in enumerate(cam_tensors):
|
@@ -164,6 +184,9 @@ def multimodal_understanding(model_type,
|
|
164 |
cam_i = add_title_to_image(cam_i, input_ids_decoded[start + i])
|
165 |
|
166 |
cam.append(cam_i)
|
|
|
|
|
|
|
167 |
|
168 |
# Collect Results
|
169 |
RESULTS_ROOT = "./results"
|
@@ -193,7 +216,7 @@ def multimodal_understanding(model_type,
|
|
193 |
# Gradio interface
|
194 |
|
195 |
def model_slider_change(model_type):
|
196 |
-
global model_utils, vl_gpt, tokenizer, clip_utils, model_name, language_model_max_layer, language_model_best_layer
|
197 |
model_name = model_type
|
198 |
if model_type == "Clip":
|
199 |
clean()
|
@@ -251,13 +274,14 @@ def model_slider_change(model_type):
|
|
251 |
model_utils = ChartGemma_Utils()
|
252 |
vl_gpt, tokenizer = model_utils.init_ChartGemma()
|
253 |
language_model_max_layer = 18
|
|
|
254 |
language_model_best_layer = 15
|
255 |
|
256 |
res = (
|
257 |
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="answer + visualization", label="response_type"),
|
258 |
gr.Slider(minimum=1, maximum=language_model_best_layer, value=language_model_best_layer, step=1, label="visualization layers min"),
|
259 |
gr.Slider(minimum=1, maximum=language_model_best_layer, value=language_model_best_layer, step=1, label="visualization layers max"),
|
260 |
-
gr.Dropdown(choices=["Language Model"], value="Language Model", label="focus"),
|
261 |
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
|
262 |
)
|
263 |
return res
|
@@ -292,12 +316,21 @@ def focus_change(focus):
|
|
292 |
return res
|
293 |
|
294 |
else:
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
|
303 |
|
@@ -305,27 +338,37 @@ def focus_change(focus):
|
|
305 |
|
306 |
with gr.Blocks() as demo:
|
307 |
gr.Markdown(value="# Multimodal Understanding")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
with gr.Row():
|
309 |
-
with gr.Column():
|
310 |
-
image_input = gr.Image()
|
311 |
-
activation_map_output = gr.Gallery(label="activation Map", height=300, columns=1)
|
312 |
|
313 |
with gr.Column():
|
314 |
model_selector = gr.Dropdown(choices=["Clip", "ChartGemma-3B", "Janus-Pro-1B", "Janus-Pro-7B", "LLaVA-1.5-7B"], value="Clip", label="model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
response_type = gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type")
|
316 |
focus = gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus")
|
317 |
-
activation_map_method = gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="
|
318 |
visual_pooling_method = gr.Dropdown(choices=["CLS", "max", "avg"], value="CLS", label="visual pooling method")
|
319 |
|
320 |
|
321 |
visualization_layers_min = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min")
|
322 |
visualization_layers_max = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max")
|
|
|
323 |
|
324 |
-
question_input = gr.Textbox(label="Question")
|
325 |
-
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
|
326 |
-
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
|
327 |
-
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
|
328 |
-
target_token_idx = gr.Number(label="target_token_idx (-1 means all)", precision=0, value=-1)
|
329 |
|
330 |
|
331 |
|
@@ -360,8 +403,7 @@ with gr.Blocks() as demo:
|
|
360 |
|
361 |
|
362 |
understanding_button = gr.Button("Submit")
|
363 |
-
|
364 |
-
understanding_output = gr.Textbox(label="Answer")
|
365 |
understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")
|
366 |
|
367 |
|
|
|
25 |
model_name = "Clip"
|
26 |
language_model_max_layer = 24
|
27 |
language_model_best_layer = 8
|
28 |
+
vision_model_best_layer = 24
|
29 |
|
30 |
def clean():
|
31 |
global model_utils, vl_gpt, tokenizer, clip_utils
|
|
|
117 |
if activation_map_method == "GradCAM":
|
118 |
# target_layers = vl_gpt.vision_model.vision_tower.blocks
|
119 |
if focus == "Visual Encoder":
|
120 |
+
if model_name.split('-')[0] == "Janus":
|
121 |
+
all_layers = [block.norm1 for block in vl_gpt.vision_model.vision_tower.blocks]
|
122 |
+
else:
|
123 |
+
all_layers = [block.layer_norm1 for block in vl_gpt.vision_tower.vision_model.encoder.layers]
|
124 |
else:
|
125 |
all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
|
126 |
|
|
|
141 |
gradcam = AttentionGuidedCAMChartGemma(vl_gpt, target_layers)
|
142 |
|
143 |
start = 0
|
144 |
+
cam = []
|
145 |
if focus == "Visual Encoder":
|
146 |
+
if target_token_idx != -1:
|
147 |
+
cam_tensors, grid_size, start = gradcam.generate_cam(prepare_inputs, tokenizer, temperature, top_p, target_token_idx, visual_pooling_method, focus)
|
148 |
+
cam_grid = cam_tensors.reshape(grid_size, grid_size)
|
149 |
+
cam_i = generate_gradcam(cam_grid, image)
|
150 |
+
cam_i = add_title_to_image(cam_i, input_ids_decoded[start + target_token_idx])
|
151 |
+
cam = [cam_i]
|
152 |
+
else:
|
153 |
+
i = 0
|
154 |
+
cam = []
|
155 |
+
while start + i < len(input_ids_decoded):
|
156 |
+
if model_name.split('-')[0] == "Janus":
|
157 |
+
gradcam = AttentionGuidedCAMJanus(vl_gpt, target_layers)
|
158 |
+
elif model_name.split('-')[0] == "LLaVA":
|
159 |
+
gradcam = AttentionGuidedCAMLLaVA(vl_gpt, target_layers)
|
160 |
+
elif model_name.split('-')[0] == "ChartGemma":
|
161 |
+
gradcam = AttentionGuidedCAMChartGemma(vl_gpt, target_layers)
|
162 |
+
cam_tensors, grid_size, start = gradcam.generate_cam(prepare_inputs, tokenizer, temperature, top_p, i, visual_pooling_method, focus)
|
163 |
+
cam_grid = cam_tensors.reshape(grid_size, grid_size)
|
164 |
+
cam_i = generate_gradcam(cam_grid, image)
|
165 |
+
cam_i = add_title_to_image(cam_i, input_ids_decoded[start + i])
|
166 |
+
cam.append(cam_i)
|
167 |
+
gradcam.remove_hooks()
|
168 |
+
i += 1
|
169 |
else:
|
170 |
cam_tensors, grid_size, start = gradcam.generate_cam(prepare_inputs, tokenizer, temperature, top_p, target_token_idx, visual_pooling_method, focus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
if target_token_idx != -1:
|
172 |
input_text_decoded = input_ids_decoded[start + target_token_idx]
|
173 |
for i, cam_tensor in enumerate(cam_tensors):
|
|
|
184 |
cam_i = add_title_to_image(cam_i, input_ids_decoded[start + i])
|
185 |
|
186 |
cam.append(cam_i)
|
187 |
+
|
188 |
+
gradcam.remove_hooks()
|
189 |
+
|
190 |
|
191 |
# Collect Results
|
192 |
RESULTS_ROOT = "./results"
|
|
|
216 |
# Gradio interface
|
217 |
|
218 |
def model_slider_change(model_type):
|
219 |
+
global model_utils, vl_gpt, tokenizer, clip_utils, model_name, language_model_max_layer, language_model_best_layer, vision_model_best_layer
|
220 |
model_name = model_type
|
221 |
if model_type == "Clip":
|
222 |
clean()
|
|
|
274 |
model_utils = ChartGemma_Utils()
|
275 |
vl_gpt, tokenizer = model_utils.init_ChartGemma()
|
276 |
language_model_max_layer = 18
|
277 |
+
vision_model_best_layer = 19
|
278 |
language_model_best_layer = 15
|
279 |
|
280 |
res = (
|
281 |
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="answer + visualization", label="response_type"),
|
282 |
gr.Slider(minimum=1, maximum=language_model_best_layer, value=language_model_best_layer, step=1, label="visualization layers min"),
|
283 |
gr.Slider(minimum=1, maximum=language_model_best_layer, value=language_model_best_layer, step=1, label="visualization layers max"),
|
284 |
+
gr.Dropdown(choices=["Visual Encoder", "Language Model"], value="Language Model", label="focus"),
|
285 |
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
|
286 |
)
|
287 |
return res
|
|
|
316 |
return res
|
317 |
|
318 |
else:
|
319 |
+
if model_name.split('-')[0] == "ChartGemma":
|
320 |
+
res = (
|
321 |
+
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type"),
|
322 |
+
gr.Slider(minimum=1, maximum=26, value=vision_model_best_layer, step=1, label="visualization layers min"),
|
323 |
+
gr.Slider(minimum=1, maximum=26, value=vision_model_best_layer, step=1, label="visualization layers max")
|
324 |
+
)
|
325 |
+
return res
|
326 |
+
|
327 |
+
else:
|
328 |
+
res = (
|
329 |
+
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type"),
|
330 |
+
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers min"),
|
331 |
+
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers max")
|
332 |
+
)
|
333 |
+
return res
|
334 |
|
335 |
|
336 |
|
|
|
338 |
|
339 |
with gr.Blocks() as demo:
|
340 |
gr.Markdown(value="# Multimodal Understanding")
|
341 |
+
|
342 |
+
with gr.Row():
|
343 |
+
image_input = gr.Image(height=500, label="Image")
|
344 |
+
activation_map_output = gr.Gallery(label="Visualization", height=500, columns=1, preview=True)
|
345 |
+
|
346 |
+
with gr.Row():
|
347 |
+
chart_type = gr.Textbox(label="Chart Type")
|
348 |
+
understanding_output = gr.Textbox(label="Answer")
|
349 |
+
|
350 |
with gr.Row():
|
|
|
|
|
|
|
351 |
|
352 |
with gr.Column():
|
353 |
model_selector = gr.Dropdown(choices=["Clip", "ChartGemma-3B", "Janus-Pro-1B", "Janus-Pro-7B", "LLaVA-1.5-7B"], value="Clip", label="model")
|
354 |
+
question_input = gr.Textbox(label="Input Prompt")
|
355 |
+
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
|
356 |
+
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
|
357 |
+
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
|
358 |
+
target_token_idx = gr.Number(label="target_token_idx (-1 means all)", precision=0, value=-1)
|
359 |
+
|
360 |
+
|
361 |
+
with gr.Column():
|
362 |
response_type = gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type")
|
363 |
focus = gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus")
|
364 |
+
activation_map_method = gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="visualization type")
|
365 |
visual_pooling_method = gr.Dropdown(choices=["CLS", "max", "avg"], value="CLS", label="visual pooling method")
|
366 |
|
367 |
|
368 |
visualization_layers_min = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min")
|
369 |
visualization_layers_max = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max")
|
370 |
+
|
371 |
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
|
374 |
|
|
|
403 |
|
404 |
|
405 |
understanding_button = gr.Button("Submit")
|
406 |
+
|
|
|
407 |
understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")
|
408 |
|
409 |
|
demo/cam.py
CHANGED
@@ -85,10 +85,11 @@ class AttentionGuidedCAMClip(AttentionGuidedCAM):
|
|
85 |
print("act shape", act.shape)
|
86 |
print("grad_weights shape", grad_weights.shape)
|
87 |
|
88 |
-
# cam = (act * grad_weights).sum(dim=-1)
|
89 |
cam, _ = (act * grad_weights).max(dim=-1)
|
|
|
|
|
90 |
# cam, _ = grad_weights.max(dim=-1)
|
91 |
-
# cam = self.normalize(cam)
|
92 |
print("cam_shape: ", cam.shape)
|
93 |
|
94 |
# Sum across all layers
|
@@ -166,20 +167,23 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
|
|
166 |
|
167 |
if focus == "Visual Encoder":
|
168 |
# Pooling
|
169 |
-
if visual_pooling_method == "CLS":
|
170 |
-
|
171 |
-
elif visual_pooling_method == "avg":
|
172 |
-
|
173 |
-
elif visual_pooling_method == "max":
|
174 |
-
|
175 |
-
|
176 |
-
print("image_embeddings_shape: ", image_embeddings_pooled.shape)
|
177 |
-
|
178 |
|
|
|
|
|
179 |
|
180 |
-
|
|
|
181 |
self.model.zero_grad()
|
182 |
-
image_embeddings_pooled.backward(inputs_embeddings_pooled, retain_graph=True)
|
|
|
|
|
|
|
183 |
|
184 |
cam_sum = None
|
185 |
for act, grad in zip(self.activations, self.gradients):
|
@@ -195,6 +199,7 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
|
|
195 |
print("grad_weights shape", grad_weights.shape)
|
196 |
|
197 |
cam, _ = (act * grad_weights).max(dim=-1)
|
|
|
198 |
print(cam.shape)
|
199 |
|
200 |
# Sum across all layers
|
@@ -224,7 +229,7 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
|
|
224 |
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
|
225 |
cam_sum = cam_sum.detach().to("cpu")
|
226 |
|
227 |
-
return cam_sum, grid_size
|
228 |
|
229 |
|
230 |
|
@@ -407,7 +412,7 @@ class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
|
|
407 |
class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
408 |
def __init__(self, model, target_layers):
|
409 |
self.target_layers = target_layers
|
410 |
-
super().__init__(model, register=
|
411 |
self._modify_layers()
|
412 |
self._register_hooks_activations()
|
413 |
|
@@ -445,12 +450,9 @@ class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
|
445 |
for param in layer.parameters():
|
446 |
param.requires_grad = True
|
447 |
|
448 |
-
outputs_raw = self.model(**inputs)
|
|
|
449 |
|
450 |
-
self.model.zero_grad()
|
451 |
-
# print(outputs_raw)
|
452 |
-
loss = outputs_raw.logits.max(dim=-1).values.sum()
|
453 |
-
loss.backward()
|
454 |
|
455 |
# get image masks
|
456 |
image_mask = []
|
@@ -462,61 +464,135 @@ class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
|
462 |
last = i
|
463 |
else:
|
464 |
image_mask.append(False)
|
|
|
465 |
|
466 |
|
467 |
-
# Aggregate activations and gradients from ALL layers
|
468 |
-
self.activations = [layer.get_attn_map() for layer in self.target_layers]
|
469 |
-
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
|
470 |
-
print(f"layers shape: {len(self.target_layers)}")
|
471 |
-
print("activations & gradients shape", len(self.activations), len(self.gradients))
|
472 |
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
|
|
|
|
|
|
480 |
|
481 |
-
grad = F.relu(grad)
|
482 |
|
483 |
-
cam = act * grad # shape: [1, heads, seq_len, seq_len]
|
484 |
-
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
|
485 |
-
cam = cam.to(torch.float32).detach().cpu()
|
486 |
-
cams.append(cam)
|
487 |
|
488 |
-
|
489 |
-
|
|
|
490 |
|
491 |
-
|
492 |
-
|
493 |
|
494 |
-
start_idx = last + 1
|
495 |
-
for i in range(start_idx, cams[0].shape[1]):
|
496 |
cam_sum = None
|
497 |
-
for
|
498 |
-
|
|
|
|
|
499 |
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
num_patches = cam_l_i.shape[-1] # Last dimension of CAM output
|
504 |
-
grid_size = int(num_patches ** 0.5)
|
505 |
-
# print(f"Detected grid size: {grid_size}x{grid_size}")
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
|
|
|
|
|
|
|
|
|
|
513 |
else:
|
514 |
-
cam_sum +=
|
515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
|
517 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
|
522 |
return cam_sum_lst, grid_size, start_idx
|
|
|
85 |
print("act shape", act.shape)
|
86 |
print("grad_weights shape", grad_weights.shape)
|
87 |
|
88 |
+
# cam = (act * grad_weights).sum(dim=-1)
|
89 |
cam, _ = (act * grad_weights).max(dim=-1)
|
90 |
+
# cam, _ = act.max(dim=-1)
|
91 |
+
# cam = cam.unsqueeze(0)
|
92 |
# cam, _ = grad_weights.max(dim=-1)
|
|
|
93 |
print("cam_shape: ", cam.shape)
|
94 |
|
95 |
# Sum across all layers
|
|
|
167 |
|
168 |
if focus == "Visual Encoder":
|
169 |
# Pooling
|
170 |
+
# if visual_pooling_method == "CLS":
|
171 |
+
# image_embeddings_pooled = image_embeddings[:, 0, :]
|
172 |
+
# elif visual_pooling_method == "avg":
|
173 |
+
# image_embeddings_pooled = image_embeddings[:, 1:, :].mean(dim=1)
|
174 |
+
# elif visual_pooling_method == "max":
|
175 |
+
# image_embeddings_pooled, _ = image_embeddings[:, 1:, :].max(dim=1)
|
|
|
|
|
|
|
176 |
|
177 |
+
# print("image_embeddings_shape: ", image_embeddings_pooled.shape)
|
178 |
+
|
179 |
|
180 |
+
start_idx = 620
|
181 |
+
# inputs_embeddings_pooled = inputs_embeddings[:, start_idx: -4].mean(dim=1)
|
182 |
self.model.zero_grad()
|
183 |
+
# image_embeddings_pooled.backward(inputs_embeddings_pooled, retain_graph=True)
|
184 |
+
|
185 |
+
loss = outputs.logits.max(dim=-1).values[0, start_idx + class_idx]
|
186 |
+
loss.backward()
|
187 |
|
188 |
cam_sum = None
|
189 |
for act, grad in zip(self.activations, self.gradients):
|
|
|
199 |
print("grad_weights shape", grad_weights.shape)
|
200 |
|
201 |
cam, _ = (act * grad_weights).max(dim=-1)
|
202 |
+
# cam, _ = grad_weights.max(dim=-1)
|
203 |
print(cam.shape)
|
204 |
|
205 |
# Sum across all layers
|
|
|
229 |
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
|
230 |
cam_sum = cam_sum.detach().to("cpu")
|
231 |
|
232 |
+
return cam_sum, grid_size, start_idx
|
233 |
|
234 |
|
235 |
|
|
|
412 |
class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
|
413 |
def __init__(self, model, target_layers):
|
414 |
self.target_layers = target_layers
|
415 |
+
super().__init__(model, register=True)
|
416 |
self._modify_layers()
|
417 |
self._register_hooks_activations()
|
418 |
|
|
|
450 |
for param in layer.parameters():
|
451 |
param.requires_grad = True
|
452 |
|
453 |
+
outputs_raw = self.model(**inputs, output_hidden_states=True)
|
454 |
+
|
455 |
|
|
|
|
|
|
|
|
|
456 |
|
457 |
# get image masks
|
458 |
image_mask = []
|
|
|
464 |
last = i
|
465 |
else:
|
466 |
image_mask.append(False)
|
467 |
+
start_idx = last + 1
|
468 |
|
469 |
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
+
if focus == "Visual Encoder":
|
472 |
+
# image_embeddings = outputs_raw.image_hidden_states
|
473 |
+
# inputs_embeddings = outputs_raw.hidden_states[0]
|
474 |
+
# # Pooling
|
475 |
+
# if visual_pooling_method == "avg":
|
476 |
+
# image_embeddings_pooled = image_embeddings.mean(dim=1) # end of image: 618
|
477 |
+
# elif visual_pooling_method == "max":
|
478 |
+
# image_embeddings_pooled, _ = image_embeddings.max(dim=1)
|
479 |
+
|
480 |
+
# print("image_embeddings_shape: ", image_embeddings_pooled.shape)
|
481 |
|
|
|
482 |
|
|
|
|
|
|
|
|
|
483 |
|
484 |
+
# inputs_embeddings_pooled = inputs_embeddings[:, start_idx:].mean(dim=1)
|
485 |
+
self.model.zero_grad()
|
486 |
+
# image_embeddings_pooled.backward(inputs_embeddings_pooled, retain_graph=True)
|
487 |
|
488 |
+
loss = outputs_raw.logits.max(dim=-1).values[0, start_idx + class_idx]
|
489 |
+
loss.backward()
|
490 |
|
|
|
|
|
491 |
cam_sum = None
|
492 |
+
for act, grad in zip(self.activations, self.gradients):
|
493 |
+
# act = torch.sigmoid(act)
|
494 |
+
act = F.relu(act[0])
|
495 |
+
|
496 |
|
497 |
+
# Compute mean of gradients
|
498 |
+
print("grad shape:", grad.shape)
|
499 |
+
grad_weights = grad.mean(dim=-1, keepdim=True)
|
|
|
|
|
|
|
500 |
|
501 |
+
print("act shape", act.shape)
|
502 |
+
print("grad_weights shape", grad_weights.shape)
|
503 |
+
|
504 |
+
cam = (act * grad_weights).sum(dim=-1)
|
505 |
+
# cam, _ = (act * grad_weights).max(dim=-1)
|
506 |
+
# cam, _ = grad_weights.max(dim=-1)
|
507 |
+
print(cam.shape)
|
508 |
+
|
509 |
+
# Sum across all layers
|
510 |
+
if cam_sum is None:
|
511 |
+
cam_sum = cam
|
512 |
else:
|
513 |
+
cam_sum += cam
|
514 |
+
|
515 |
+
# Normalize
|
516 |
+
cam_sum = F.relu(cam_sum)
|
517 |
+
|
518 |
+
|
519 |
+
# thresholding
|
520 |
+
cam_sum = cam_sum.to(torch.float32).detach().cpu()
|
521 |
+
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
|
522 |
+
cam_sum[cam_sum < percentile] = 0
|
523 |
|
524 |
+
# Reshape
|
525 |
+
print("cam_sum shape: ", cam_sum.shape)
|
526 |
+
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
|
527 |
+
grid_size = int(num_patches ** 0.5)
|
528 |
+
print(f"Detected grid size: {grid_size}x{grid_size}")
|
529 |
+
|
530 |
+
cam_sum = cam_sum.view(grid_size, grid_size)
|
531 |
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
|
532 |
+
|
533 |
+
return cam_sum, grid_size, start_idx
|
534 |
+
|
535 |
+
elif focus == "Language Model":
|
536 |
+
self.model.zero_grad()
|
537 |
+
# print(outputs_raw)
|
538 |
+
loss = outputs_raw.logits.max(dim=-1).values.sum()
|
539 |
+
loss.backward()
|
540 |
+
|
541 |
+
|
542 |
+
|
543 |
+
# Aggregate activations and gradients from ALL layers
|
544 |
+
self.activations = [layer.get_attn_map() for layer in self.target_layers]
|
545 |
+
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
|
546 |
+
print(f"layers shape: {len(self.target_layers)}")
|
547 |
+
print("activations & gradients shape", len(self.activations), len(self.gradients))
|
548 |
+
|
549 |
+
cams = []
|
550 |
+
|
551 |
+
# Ver 2
|
552 |
+
for act, grad in zip(self.activations, self.gradients):
|
553 |
+
|
554 |
+
print("act shape", act.shape)
|
555 |
+
print("grad shape", grad.shape)
|
556 |
+
|
557 |
+
grad = F.relu(grad)
|
558 |
+
|
559 |
+
cam = act * grad # shape: [1, heads, seq_len, seq_len]
|
560 |
+
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
|
561 |
+
cam = cam.to(torch.float32).detach().cpu()
|
562 |
+
cams.append(cam)
|
563 |
+
|
564 |
+
# cam_sum = F.relu(cam_sum)
|
565 |
+
# cam_sum = cam_sum.to(torch.float32)
|
566 |
+
|
567 |
+
# cams shape: [layers, 1, seq_len, seq_len]
|
568 |
+
cam_sum_lst = []
|
569 |
+
|
570 |
+
start_idx = last + 1
|
571 |
+
for i in range(start_idx, cams[0].shape[1]):
|
572 |
+
cam_sum = None
|
573 |
+
for layer, cam_l in enumerate(cams):
|
574 |
+
cam_l_i = cam_l[0, i, :] # shape: [1: seq_len]
|
575 |
+
|
576 |
+
cam_l_i = cam_l_i[image_mask].unsqueeze(0) # shape: [1, img_seq_len]
|
577 |
+
# print(f"layer: {layer}, token index: {i}")
|
578 |
+
# print("cam_sum shape: ", cam_l_i.shape)
|
579 |
+
num_patches = cam_l_i.shape[-1] # Last dimension of CAM output
|
580 |
+
grid_size = int(num_patches ** 0.5)
|
581 |
+
# print(f"Detected grid size: {grid_size}x{grid_size}")
|
582 |
+
|
583 |
+
# Fix the reshaping step dynamically
|
584 |
+
cam_reshaped = cam_l_i.view(grid_size, grid_size)
|
585 |
+
# print(f"max: {cam_reshaped.max()}, min: {cam_reshaped.min()}")
|
586 |
+
# cam_reshaped = (cam_reshaped - cam_reshaped.min()) / (cam_reshaped.max() - cam_reshaped.min())
|
587 |
+
if cam_sum == None:
|
588 |
+
cam_sum = cam_reshaped
|
589 |
+
else:
|
590 |
+
cam_sum += cam_reshaped
|
591 |
+
# print(f"normalized: max: {cam_normalized.max()}, min: {cam_normalized.min()}")
|
592 |
+
|
593 |
+
# print(f"sum: max: {cam_sum.max()}, min: {cam_sum.min()}")
|
594 |
+
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
|
595 |
+
cam_sum_lst.append(cam_sum)
|
596 |
|
597 |
|
598 |
return cam_sum_lst, grid_size, start_idx
|