File size: 5,175 Bytes
8b5e432
 
2067800
8b5e432
 
2067800
8b5e432
 
 
6d117d1
8b5e432
6d117d1
8b5e432
 
2bbc5f6
 
 
 
 
 
 
 
 
 
2067800
 
 
2bbc5f6
8b5e432
 
2bbc5f6
8b5e432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067800
 
 
 
 
 
 
8b5e432
6d117d1
8b5e432
 
 
 
 
2067800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e432
 
2067800
6d117d1
 
2067800
 
 
 
 
 
8b5e432
2067800
 
8b5e432
 
 
 
 
6d117d1
8b5e432
 
 
 
 
 
 
2067800
6d117d1
8b5e432
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import torch
import base64
import numpy as np
from PIL import Image
from openai import OpenAI
from demo.model_utils import *
from evaluate.questions import questions

def set_seed(model_seed = 70):
    torch.manual_seed(model_seed)
    # np.random.seed(model_seed)
    torch.cuda.manual_seed(model_seed) if torch.cuda.is_available() else None

def clean():
    # Empty CUDA cache
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()  # Frees inter-process CUDA memory
    
    # Empty MacOS Metal backend (if using Apple Silicon)
    if torch.backends.mps.is_available():
        torch.mps.empty_cache()

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def evaluate(model_type, num_eval = 10):
    for eval_idx in range(num_eval):
        clean()
        set_seed(np.random.randint(0, 1000))
        model_utils, vl_gpt, tokenizer = None, None, None

        if model_type.split('-')[0] == "Janus":
            model_utils = Janus_Utils()
            vl_gpt, tokenizer = model_utils.init_Janus(model_type.split('-')[-1])

        elif model_type.split('-')[0] == "LLaVA":
            model_utils = LLaVA_Utils()
            version = model_type.split('-')[1]
            vl_gpt, tokenizer = model_utils.init_LLaVA(version=version)
        
        elif model_type.split('-')[0] == "ChartGemma":
            model_utils = ChartGemma_Utils()
            vl_gpt, tokenizer = model_utils.init_ChartGemma()
        
        elif model_type.split('-')[0] == "GPT":
            client = OpenAI(api_key=os.environ["OPENAI_HCI_API_KEY"])
        
        elif model_type.split('-')[0] == "Gemini":
            client = OpenAI(api_key=os.environ["GEMINI_HCI_API_KEY"], 
                            base_url="https://generativelanguage.googleapis.com/v1beta/openai/")

        for question_idx, question in enumerate(questions):
            chart_type = question[0]
            q = question[1]
            img_path = question[2]
            image = np.array(Image.open(img_path).convert("RGB"))

            
            
            if model_type.split('-')[0] == "GPT":
                base64_image = encode_image(img_path)
                completion = client.chat.completions.create(
                    model="gpt-4o",
                    messages=[
                        {
                            "role": "user",
                            "content": [
                                { "type": "text", "text": f"{q}" },
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:image/jpeg;base64,{base64_image}",
                                    },
                                },
                            ],
                        }
                    ],
                )
                answer = completion.choices[0].message.content

            elif model_type.split('-')[0] == "Gemini":
                base64_image = encode_image(img_path)
                completion = client.chat.completions.create(
                    model="gemini-2.0-flash",
                    messages=[
                        {
                            "role": "user",
                            "content": [
                                { "type": "text", "text": f"{q}" },
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:image/jpeg;base64,{base64_image}",
                                    },
                                },
                            ],
                        }
                    ],
                )
                answer = completion.choices[0].message.content

            else:
                prepare_inputs = model_utils.prepare_inputs(q, image)
                temperature = 0.1
                top_p = 0.95

                if model_type.split('-')[0] == "Janus":
                    inputs_embeds = model_utils.generate_inputs_embeddings(prepare_inputs)
                    outputs = model_utils.generate_outputs(inputs_embeds, prepare_inputs, temperature, top_p)
                else:
                    outputs = model_utils.generate_outputs(prepare_inputs, temperature, top_p)

                sequences = outputs.sequences.cpu().tolist()
                answer = tokenizer.decode(sequences[0], skip_special_tokens=True)

            RESULTS_ROOT = "./evaluate/results"
            FILES_ROOT = f"{RESULTS_ROOT}/{model_type}/{eval_idx}"
            os.makedirs(FILES_ROOT, exist_ok=True)

            with open(f"{FILES_ROOT}/Q{question_idx + 1}-{chart_type}.txt", "w") as f:
                f.write(answer)
                f.close()



if __name__ == '__main__':
    
    # models = ["ChartGemma", "Janus-Pro-1B", "Janus-Pro-7B", "LLaVA-1.5-7B", "GPT-4o", "Gemini-2.0-flash"]
    models = ["Janus-Pro-7B"]
    for model_type in models:
        evaluate(model_type=model_type, num_eval=10)