Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,53 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
-
from tensorflow.keras.models import load_model
|
4 |
-
from tensorflow.keras.preprocessing import image as keras_image
|
5 |
-
import numpy as np
|
6 |
|
7 |
# Load the trained model
|
8 |
-
|
9 |
|
10 |
# Define the categories based on your model's output
|
11 |
-
categories =
|
12 |
-
'Black', 'Indian', 'Southeast Asian',
|
13 |
-
'East Asian', 'White', 'Middle Eastern', 'Latino_Hispanic'
|
14 |
-
] # Replace with your actual categories
|
15 |
|
16 |
# Define the function to classify images
|
17 |
def classify_image(img):
|
18 |
-
|
19 |
-
|
20 |
-
img_array = np.expand_dims(img_array, axis=0)
|
21 |
-
img_array /= 255.0
|
22 |
-
|
23 |
-
predictions = model.predict(img_array)
|
24 |
-
return {category: float(pred) for category, pred in zip(categories, predictions[0])}
|
25 |
|
26 |
# Define the Gradio components
|
27 |
image = gr.Image(type='pil', label='Upload an Image')
|
28 |
label = gr.Label(label="Predictions")
|
29 |
examples = ['example1.jpeg', 'example2.jpeg', 'example3.jpeg'] # Replace with your example images
|
30 |
|
31 |
-
# Define
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
___all___ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
2 |
+
|
3 |
+
from fastai.vision.all import *
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load the trained model
|
7 |
+
learn = load_learner('second_model.pkl')
|
8 |
|
9 |
# Define the categories based on your model's output
|
10 |
+
categories = learn.dls.vocab
|
|
|
|
|
|
|
11 |
|
12 |
# Define the function to classify images
|
13 |
def classify_image(img):
|
14 |
+
pred, idx, probs = learn.predict(img)
|
15 |
+
return dict(zip(categories, map(float, probs)))
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Define the Gradio components
|
18 |
image = gr.Image(type='pil', label='Upload an Image')
|
19 |
label = gr.Label(label="Predictions")
|
20 |
examples = ['example1.jpeg', 'example2.jpeg', 'example3.jpeg'] # Replace with your example images
|
21 |
|
22 |
+
# Define a theme selector
|
23 |
+
theme_selector = gr.Dropdown(choices=['default', 'dark', 'huggingface', 'compact'], label="Choose Theme", value='default')
|
24 |
+
|
25 |
+
# Function to create and launch the Gradio interface
|
26 |
+
def create_interface(theme):
|
27 |
+
return gr.Interface(
|
28 |
+
fn=classify_image,
|
29 |
+
inputs=image,
|
30 |
+
outputs=label,
|
31 |
+
title="Image Classifier",
|
32 |
+
description="Upload an image to classify it based on the trained model.",
|
33 |
+
examples=examples,
|
34 |
+
layout="horizontal",
|
35 |
+
theme=theme
|
36 |
+
)
|
37 |
+
|
38 |
+
# Create the initial interface
|
39 |
+
intf = create_interface('default')
|
40 |
+
|
41 |
+
# Define a callback to update the theme
|
42 |
+
def update_theme(theme):
|
43 |
+
global intf
|
44 |
+
intf.close() # Close the current interface
|
45 |
+
intf = create_interface(theme) # Create a new interface with the selected theme
|
46 |
+
intf.launch(share=True, inline=False) # Launch the new interface
|
47 |
+
|
48 |
+
# Launch the initial interface
|
49 |
+
intf.launch(share=True, inline=False)
|
50 |
+
|
51 |
+
# Add a separate interface for theme selection
|
52 |
+
theme_intf = gr.Interface(fn=update_theme, inputs=theme_selector, outputs=None, live=True)
|
53 |
+
theme_intf.launch(share=True, inline=False)
|