Spaces:
Sleeping
Sleeping
utkmst
commited on
Commit
·
9dc1be5
1
Parent(s):
098cb8a
Add initial application files and model
Browse files- app.py +24 -0
- example1.jpeg +0 -0
- example2.jpeg +0 -0
- example3.jpeg +0 -0
- human_race_model.pkl +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
___all___ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
2 |
+
|
3 |
+
from fastai.vision.all import *
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
learn = load_learner('human_race_model.pkl')
|
8 |
+
|
9 |
+
# Define the categories based on your model's output
|
10 |
+
categories = learn.dls.vocab
|
11 |
+
|
12 |
+
# Define the function to classify images
|
13 |
+
def classify_image(img):
|
14 |
+
pred, idx, probs = learn.predict(img)
|
15 |
+
return dict(zip(categories, map(float, probs)))
|
16 |
+
|
17 |
+
# Define the Gradio components
|
18 |
+
image = gr.Image(type='pil', label='Input Image')
|
19 |
+
label = gr.Label()
|
20 |
+
examples = ['example1.jpeg', 'example2.jpeg', 'example3.jpeg'] # Replace with your example images
|
21 |
+
|
22 |
+
# Create and launch the Gradio interface
|
23 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, title="Image Classifier", examples=examples)
|
24 |
+
intf.launch(inline=False)
|
example1.jpeg
ADDED
![]() |
example2.jpeg
ADDED
![]() |
example3.jpeg
ADDED
![]() |
human_race_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:515f3f10533d6b5510db7126eb5dd81936ced0ecedf535f036f35a84958da0b4
|
3 |
+
size 47110142
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
fastapi
|
3 |
+
uvicorn
|
4 |
+
aiofiles
|