Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,24 @@
|
|
1 |
___all___ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
2 |
|
3 |
-
from
|
4 |
-
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
import gradio as gr
|
7 |
|
8 |
-
# Define the ETHNICITIES dictionary
|
9 |
-
ETHNICITIES = {0: "White", 1: "Black", 2: "Asian", 3: "Indian", 4: "Hispanic"}
|
10 |
-
|
11 |
# Load the trained model
|
12 |
-
|
13 |
|
14 |
# Define the categories based on your model's output
|
15 |
-
categories =
|
16 |
|
17 |
# Define the function to classify images
|
18 |
def classify_image(img):
|
19 |
-
|
20 |
-
img = img.convert('L') # Convert image to grayscale
|
21 |
-
img = np.array(img) / 255.0 # Normalize the image
|
22 |
-
img = img.reshape(-1, 48, 48, 1) # Reshape the image to match model input shape
|
23 |
-
pred = Model_L.predict(img)
|
24 |
-
probs = pred[0]
|
25 |
return dict(zip(categories, map(float, probs)))
|
26 |
|
27 |
# Define the Gradio components
|
28 |
-
image = gr.Image(type='pil', label='
|
29 |
-
label = gr.Label(
|
30 |
examples = ['example1.jpeg', 'example2.jpeg', 'example3.jpeg'] # Replace with your example images
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
fn=classify_image,
|
36 |
-
inputs=image,
|
37 |
-
outputs=label,
|
38 |
-
title="Face to Race",
|
39 |
-
description="Upload an image to classify it based on the trained model.",
|
40 |
-
examples=examples,
|
41 |
-
theme=theme
|
42 |
-
)
|
43 |
-
|
44 |
-
# Create the initial interface
|
45 |
-
intf = create_interface()
|
46 |
-
|
47 |
-
# Define a callback to update the theme
|
48 |
-
def update_theme(theme):
|
49 |
-
global intf
|
50 |
-
intf.close() # Close the current interface
|
51 |
-
intf = create_interface(theme) # Create a new interface with the selected theme
|
52 |
-
intf.launch(share=True, inline=False) # Launch the new interface
|
53 |
-
|
54 |
-
# Add a theme selector interface
|
55 |
-
theme_selector = gr.Interface(
|
56 |
-
fn=update_theme,
|
57 |
-
inputs=gr.Dropdown(choices=['default', 'dark', 'huggingface', 'compact'], label="Choose Theme", value='default'),
|
58 |
-
outputs=None,
|
59 |
-
live=True
|
60 |
-
)
|
61 |
-
|
62 |
-
# Launch the initial interface and the theme selector interface
|
63 |
-
intf.launch(share=True, inline=False)
|
64 |
-
theme_selector.launch(share=True, inline=False)
|
|
|
1 |
___all___ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
2 |
|
3 |
+
from fastai.vision.all import *
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
|
|
|
|
|
|
6 |
# Load the trained model
|
7 |
+
learn = load_learner('second_model.pkl')
|
8 |
|
9 |
# Define the categories based on your model's output
|
10 |
+
categories = learn.dls.vocab
|
11 |
|
12 |
# Define the function to classify images
|
13 |
def classify_image(img):
|
14 |
+
pred, idx, probs = learn.predict(img)
|
|
|
|
|
|
|
|
|
|
|
15 |
return dict(zip(categories, map(float, probs)))
|
16 |
|
17 |
# Define the Gradio components
|
18 |
+
image = gr.Image(type='pil', label='Input Image')
|
19 |
+
label = gr.Label()
|
20 |
examples = ['example1.jpeg', 'example2.jpeg', 'example3.jpeg'] # Replace with your example images
|
21 |
|
22 |
+
# Create and launch the Gradio interface
|
23 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, title="Image Classifier", examples=examples)
|
24 |
+
intf.launch(inline=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|