# ELR This is an official PyTorch implementation of ELR method proposed in [Early-Learning Regularization Prevents Memorization of Noisy Labels](https://arxiv.org/abs/2007.00151). ## Usage Train the network on the Symmmetric Noise CIFAR-10 dataset (noise rate = 0.8): ``` python train.py -c config_cifar10.json --percent 0.8 ``` Train the network on the Asymmmetric Noise CIFAR-10 dataset (noise rate = 0.4): ``` python train.py -c config_cifar10_asym.json --percent 0.4 --asym 1 ``` Train the network on the Asymmmetric Noise CIFAR-100 dataset (noise rate = 0.4): ``` python train.py -c config_cifar100.json --percent 0.4 --asym 1 ``` The config files can be modified to adjust hyperparameters and optimization settings. ## Results ### CIFAR10