# ELR This is an official PyTorch implementation of ELR method proposed in [Early-Learning Regularization Prevents Memorization of Noisy Labels](https://arxiv.org/abs/2007.00151). ## Usage Train the network on the Symmmetric Noise CIFAR-10 dataset (noise rate = 0.8): ``` python train.py -c config_cifar10.json --percent 0.8 ``` Train the network on the Asymmmetric Noise CIFAR-10 dataset (noise rate = 0.4): ``` python train.py -c config_cifar10_asym.json --percent 0.4 --asym 1 ``` Train the network on the Asymmmetric Noise CIFAR-100 dataset (noise rate = 0.4): ``` python train.py -c config_cifar100.json --percent 0.4 --asym 1 ``` The config files can be modified to adjust hyperparameters and optimization settings. ## Results ### CIFAR10
| Method | 20% | 40% | 60% | 80% | 40% Asym | | ---------------------- | ----------- | ----------- | ----------- | ----------- | ----------- | | ELR | 91.16% | 89.15% | 86.12% | 73.86% | 90.12% | | ELR (cosine annealing) | 91.12% | 91.43% | 88.87% | 80.69% | 90.35% | ### CIAFAR100 | Method | 20% | 40% | 60% | 80% | 40% Asym | | ---------------------- | ----------- | ----------- | ----------- | ----------- | ----------- | | ELR | 74.21% | 68.28% | 59.28% | 29.78% | 73.71% | | ELR (cosine annealing) | 74.68% | 68.43% | 60.05% | 30.27% | 73.96% |
## References - S. Liu, J. Niles-Weed, N. Razavian and C. Fernandez-Granda "Early-Learning Regularization Prevents Memorization of Noisy Labels", 2020