Spaces:
Configuration error
Configuration error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def conv3x3(in_planes, out_planes, stride=1): | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, in_planes, planes, stride=1): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(in_planes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion*planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(self.expansion*planes) | |
) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
out += self.shortcut(x) | |
out = F.relu(out) | |
return out | |
class PreActBlock(nn.Module): | |
'''Pre-activation version of the BasicBlock.''' | |
expansion = 1 | |
def __init__(self, in_planes, planes, stride=1): | |
super(PreActBlock, self).__init__() | |
self.bn1 = nn.BatchNorm2d(in_planes) | |
self.conv1 = conv3x3(in_planes, planes, stride) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv2 = conv3x3(planes, planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion*planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) | |
) | |
def forward(self, x): | |
out = F.relu(self.bn1(x)) | |
shortcut = self.shortcut(out) | |
out = self.conv1(out) | |
out = self.conv2(F.relu(self.bn2(out))) | |
out += shortcut | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, in_planes, planes, stride=1): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(self.expansion*planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion*planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(self.expansion*planes) | |
) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = F.relu(self.bn2(self.conv2(out))) | |
out = self.bn3(self.conv3(out)) | |
out += self.shortcut(x) | |
out = F.relu(out) | |
return out | |
class PreActBottleneck(nn.Module): | |
'''Pre-activation version of the original Bottleneck module.''' | |
expansion = 4 | |
def __init__(self, in_planes, planes, stride=1): | |
super(PreActBottleneck, self).__init__() | |
self.bn1 = nn.BatchNorm2d(in_planes) | |
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion*planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) | |
) | |
def forward(self, x): | |
out = F.relu(self.bn1(x)) | |
shortcut = self.shortcut(out) | |
out = self.conv1(out) | |
out = self.conv2(F.relu(self.bn2(out))) | |
out = self.conv3(F.relu(self.bn3(out))) | |
out += shortcut | |
return out | |
class PreActResNet(nn.Module): | |
def __init__(self, block, num_blocks, num_classes=10): | |
super(PreActResNet, self).__init__() | |
self.in_planes = 64 | |
self.conv1 = conv3x3(3,64) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) | |
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) | |
self.linear = nn.Linear(512*block.expansion, num_classes) | |
def _make_layer(self, block, planes, num_blocks, stride): | |
strides = [stride] + [1]*(num_blocks-1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(self.in_planes, planes, stride)) | |
self.in_planes = planes * block.expansion | |
return nn.Sequential(*layers) | |
def forward(self, x, lin=0, lout=5): | |
out = x | |
if lin < 1 and lout > -1: | |
out = self.conv1(out) | |
out = self.bn1(out) | |
out = F.relu(out) | |
if lin < 2 and lout > 0: | |
out = self.layer1(out) | |
if lin < 3 and lout > 1: | |
out = self.layer2(out) | |
if lin < 4 and lout > 2: | |
out = self.layer3(out) | |
if lin < 5 and lout > 3: | |
out = self.layer4(out) | |
if lout > 4: | |
out = F.avg_pool2d(out, 4) | |
out = out.view(out.size(0), -1) | |
out_final = self.linear(out) | |
return out_final | |
def PreActResNet18(num_classes=10): | |
return PreActResNet(PreActBlock, [2,2,2,2], num_classes=num_classes) | |
def PreActResNet34(num_classes=10): | |
return PreActResNet(BasicBlock, [3,4,6,3], num_classes=num_classes) | |
def PreActResNet50(num_classes=10): | |
return PreActResNet(Bottleneck, [3,4,6,3], num_classes=num_classes) | |
def PreActResNet101(num_classes=10): | |
return PreActResNet(Bottleneck, [3,4,23,3], num_classes=num_classes) | |
def PreActResNet152(num_classes=10): | |
return PreActResNet(Bottleneck, [3,8,36,3], num_classes=num_classes) | |
def test(): | |
net = PreActResNet18() | |
y = net(Variable(torch.randn(1,3,32,32))) | |
print(y.size()) | |