Spaces:
Configuration error
Configuration error
from __future__ import print_function, division, absolute_import | |
import torch | |
import torch.nn as nn | |
import os | |
import sys | |
class BasicConv2d(nn.Module): | |
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): | |
super(BasicConv2d, self).__init__() | |
self.conv = nn.Conv2d(in_planes, out_planes, | |
kernel_size=kernel_size, stride=stride, | |
padding=padding, bias=False) # verify bias false | |
self.bn = nn.BatchNorm2d(out_planes, | |
eps=0.001, # value found in tensorflow | |
momentum=0.1, # default pytorch value | |
affine=True) | |
self.relu = nn.ReLU(inplace=False) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
return x | |
class Mixed_5b(nn.Module): | |
def __init__(self): | |
super(Mixed_5b, self).__init__() | |
self.branch0 = BasicConv2d(192, 96, kernel_size=1, stride=1) | |
self.branch1 = nn.Sequential( | |
BasicConv2d(192, 48, kernel_size=1, stride=1), | |
BasicConv2d(48, 64, kernel_size=5, stride=1, padding=2) | |
) | |
self.branch2 = nn.Sequential( | |
BasicConv2d(192, 64, kernel_size=1, stride=1), | |
BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1), | |
BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1) | |
) | |
self.branch3 = nn.Sequential( | |
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), | |
BasicConv2d(192, 64, kernel_size=1, stride=1) | |
) | |
def forward(self, x): | |
x0 = self.branch0(x) | |
x1 = self.branch1(x) | |
x2 = self.branch2(x) | |
x3 = self.branch3(x) | |
out = torch.cat((x0, x1, x2, x3), 1) | |
return out | |
class Block35(nn.Module): | |
def __init__(self, scale=1.0): | |
super(Block35, self).__init__() | |
self.scale = scale | |
self.branch0 = BasicConv2d(320, 32, kernel_size=1, stride=1) | |
self.branch1 = nn.Sequential( | |
BasicConv2d(320, 32, kernel_size=1, stride=1), | |
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1) | |
) | |
self.branch2 = nn.Sequential( | |
BasicConv2d(320, 32, kernel_size=1, stride=1), | |
BasicConv2d(32, 48, kernel_size=3, stride=1, padding=1), | |
BasicConv2d(48, 64, kernel_size=3, stride=1, padding=1) | |
) | |
self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1) | |
self.relu = nn.ReLU(inplace=False) | |
def forward(self, x): | |
x0 = self.branch0(x) | |
x1 = self.branch1(x) | |
x2 = self.branch2(x) | |
out = torch.cat((x0, x1, x2), 1) | |
out = self.conv2d(out) | |
out = out * self.scale + x | |
out = self.relu(out) | |
return out | |
class Mixed_6a(nn.Module): | |
def __init__(self): | |
super(Mixed_6a, self).__init__() | |
self.branch0 = BasicConv2d(320, 384, kernel_size=3, stride=2) | |
self.branch1 = nn.Sequential( | |
BasicConv2d(320, 256, kernel_size=1, stride=1), | |
BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1), | |
BasicConv2d(256, 384, kernel_size=3, stride=2) | |
) | |
self.branch2 = nn.MaxPool2d(3, stride=2) | |
def forward(self, x): | |
x0 = self.branch0(x) | |
x1 = self.branch1(x) | |
x2 = self.branch2(x) | |
out = torch.cat((x0, x1, x2), 1) | |
return out | |
class Block17(nn.Module): | |
def __init__(self, scale=1.0): | |
super(Block17, self).__init__() | |
self.scale = scale | |
self.branch0 = BasicConv2d(1088, 192, kernel_size=1, stride=1) | |
self.branch1 = nn.Sequential( | |
BasicConv2d(1088, 128, kernel_size=1, stride=1), | |
BasicConv2d(128, 160, kernel_size=(1,7), stride=1, padding=(0,3)), | |
BasicConv2d(160, 192, kernel_size=(7,1), stride=1, padding=(3,0)) | |
) | |
self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1) | |
self.relu = nn.ReLU(inplace=False) | |
def forward(self, x): | |
x0 = self.branch0(x) | |
x1 = self.branch1(x) | |
out = torch.cat((x0, x1), 1) | |
out = self.conv2d(out) | |
out = out * self.scale + x | |
out = self.relu(out) | |
return out | |
class Mixed_7a(nn.Module): | |
def __init__(self): | |
super(Mixed_7a, self).__init__() | |
self.branch0 = nn.Sequential( | |
BasicConv2d(1088, 256, kernel_size=1, stride=1), | |
BasicConv2d(256, 384, kernel_size=3, stride=2) | |
) | |
self.branch1 = nn.Sequential( | |
BasicConv2d(1088, 256, kernel_size=1, stride=1), | |
BasicConv2d(256, 288, kernel_size=3, stride=2) | |
) | |
self.branch2 = nn.Sequential( | |
BasicConv2d(1088, 256, kernel_size=1, stride=1), | |
BasicConv2d(256, 288, kernel_size=3, stride=1, padding=1), | |
BasicConv2d(288, 320, kernel_size=3, stride=2) | |
) | |
self.branch3 = nn.MaxPool2d(3, stride=2) | |
def forward(self, x): | |
x0 = self.branch0(x) | |
x1 = self.branch1(x) | |
x2 = self.branch2(x) | |
x3 = self.branch3(x) | |
out = torch.cat((x0, x1, x2, x3), 1) | |
return out | |
class Block8(nn.Module): | |
def __init__(self, scale=1.0, noReLU=False): | |
super(Block8, self).__init__() | |
self.scale = scale | |
self.noReLU = noReLU | |
self.branch0 = BasicConv2d(2080, 192, kernel_size=1, stride=1) | |
self.branch1 = nn.Sequential( | |
BasicConv2d(2080, 192, kernel_size=1, stride=1), | |
BasicConv2d(192, 224, kernel_size=(1,3), stride=1, padding=(0,1)), | |
BasicConv2d(224, 256, kernel_size=(3,1), stride=1, padding=(1,0)) | |
) | |
self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1) | |
if not self.noReLU: | |
self.relu = nn.ReLU(inplace=False) | |
def forward(self, x): | |
x0 = self.branch0(x) | |
x1 = self.branch1(x) | |
out = torch.cat((x0, x1), 1) | |
out = self.conv2d(out) | |
out = out * self.scale + x | |
if not self.noReLU: | |
out = self.relu(out) | |
return out | |
class InceptionResNetV2(nn.Module): | |
def __init__(self, num_classes=50): | |
super(InceptionResNetV2, self).__init__() | |
# Special attributs | |
self.input_space = None | |
self.input_size = (299, 299, 3) | |
self.mean = None | |
self.std = None | |
# Modules | |
self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2) | |
self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1) | |
self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1) | |
self.maxpool_3a = nn.MaxPool2d(3, stride=2) | |
self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1) | |
self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1) | |
self.maxpool_5a = nn.MaxPool2d(3, stride=2) | |
self.mixed_5b = Mixed_5b() | |
self.repeat = nn.Sequential( | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17), | |
Block35(scale=0.17) | |
) | |
self.mixed_6a = Mixed_6a() | |
self.repeat_1 = nn.Sequential( | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10), | |
Block17(scale=0.10) | |
) | |
self.mixed_7a = Mixed_7a() | |
self.repeat_2 = nn.Sequential( | |
Block8(scale=0.20), | |
Block8(scale=0.20), | |
Block8(scale=0.20), | |
Block8(scale=0.20), | |
Block8(scale=0.20), | |
Block8(scale=0.20), | |
Block8(scale=0.20), | |
Block8(scale=0.20), | |
Block8(scale=0.20) | |
) | |
self.block8 = Block8(noReLU=True) | |
self.conv2d_7b = BasicConv2d(2080, 1536, kernel_size=1, stride=1) | |
self.avgpool_1a = nn.AdaptiveAvgPool2d((1, 1))#nn.AvgPool2d(8, count_include_pad=False) | |
self.last_linear = nn.Linear(1536, num_classes) | |
def features(self, input): | |
x = self.conv2d_1a(input) | |
x = self.conv2d_2a(x) | |
x = self.conv2d_2b(x) | |
x = self.maxpool_3a(x) | |
x = self.conv2d_3b(x) | |
x = self.conv2d_4a(x) | |
x = self.maxpool_5a(x) | |
x = self.mixed_5b(x) | |
x = self.repeat(x) | |
x = self.mixed_6a(x) | |
x = self.repeat_1(x) | |
x = self.mixed_7a(x) | |
x = self.repeat_2(x) | |
x = self.block8(x) | |
x = self.conv2d_7b(x) | |
return x | |
def logits(self, features): | |
x = self.avgpool_1a(features) | |
x = x.view(x.size(0), -1) | |
out = self.last_linear(x) | |
return out | |
def forward(self, input): | |
x = self.features(input) | |
out = self.logits(x) | |
return out | |
def test(): | |
net = InceptionResNetV2().cuda() | |
y = net(torch.randn(1,3,227,227).cuda()) | |
print(y.size()) | |
#test() |