assi1 / ELR /data_loader /cifar10.py
uthurumella's picture
Upload 69 files
72fc481 verified
raw
history blame contribute delete
7.95 kB
import sys
import numpy as np
from PIL import Image
import torchvision
from torch.utils.data.dataset import Subset
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
import torch
import torch.nn.functional as F
import random
import json
import os
def get_cifar10(root, cfg_trainer, train=True,
transform_train=None, transform_val=None,
download=False, noise_file = ''):
base_dataset = torchvision.datasets.CIFAR10(root, train=train, download=download)
if train:
train_idxs, val_idxs = train_val_split(base_dataset.targets)
train_dataset = CIFAR10_train(root, cfg_trainer, train_idxs, train=True, transform=transform_train)
val_dataset = CIFAR10_val(root, cfg_trainer, val_idxs, train=train, transform=transform_val)
if cfg_trainer['asym']:
train_dataset.asymmetric_noise()
val_dataset.asymmetric_noise()
else:
train_dataset.symmetric_noise()
val_dataset.symmetric_noise()
print(f"Train: {len(train_dataset)} Val: {len(val_dataset)}") # Train: 45000 Val: 5000
else:
train_dataset = []
val_dataset = CIFAR10_val(root, cfg_trainer, None, train=train, transform=transform_val)
print(f"Test: {len(val_dataset)}")
return train_dataset, val_dataset
def train_val_split(base_dataset: torchvision.datasets.CIFAR10):
num_classes = 10
base_dataset = np.array(base_dataset)
train_n = int(len(base_dataset) * 0.9 / num_classes)
train_idxs = []
val_idxs = []
for i in range(num_classes):
idxs = np.where(base_dataset == i)[0]
np.random.shuffle(idxs)
train_idxs.extend(idxs[:train_n])
val_idxs.extend(idxs[train_n:])
np.random.shuffle(train_idxs)
np.random.shuffle(val_idxs)
return train_idxs, val_idxs
class CIFAR10_train(torchvision.datasets.CIFAR10):
def __init__(self, root, cfg_trainer, indexs, train=True,
transform=None, target_transform=None,
download=False):
super(CIFAR10_train, self).__init__(root, train=train,
transform=transform, target_transform=target_transform,
download=download)
self.num_classes = 10
self.cfg_trainer = cfg_trainer
self.train_data = self.data[indexs]#self.train_data[indexs]
self.train_labels = np.array(self.targets)[indexs]#np.array(self.train_labels)[indexs]
self.indexs = indexs
self.prediction = np.zeros((len(self.train_data), self.num_classes, self.num_classes), dtype=np.float32)
self.noise_indx = []
def symmetric_noise(self):
self.train_labels_gt = self.train_labels.copy()
#np.random.seed(seed=888)
indices = np.random.permutation(len(self.train_data))
for i, idx in enumerate(indices):
if i < self.cfg_trainer['percent'] * len(self.train_data):
self.noise_indx.append(idx)
self.train_labels[idx] = np.random.randint(self.num_classes, dtype=np.int32)
def asymmetric_noise(self):
self.train_labels_gt = self.train_labels.copy()
for i in range(self.num_classes):
indices = np.where(self.train_labels == i)[0]
np.random.shuffle(indices)
for j, idx in enumerate(indices):
if j < self.cfg_trainer['percent'] * len(indices):
self.noise_indx.append(idx)
# truck -> automobile
if i == 9:
self.train_labels[idx] = 1
# bird -> airplane
elif i == 2:
self.train_labels[idx] = 0
# cat -> dog
elif i == 3:
self.train_labels[idx] = 5
# dog -> cat
elif i == 5:
self.train_labels[idx] = 3
# deer -> horse
elif i == 4:
self.train_labels[idx] = 7
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target, target_gt = self.train_data[index], self.train_labels[index], self.train_labels_gt[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img,target, index, target_gt
def __len__(self):
return len(self.train_data)
class CIFAR10_val(torchvision.datasets.CIFAR10):
def __init__(self, root, cfg_trainer, indexs, train=True,
transform=None, target_transform=None,
download=False):
super(CIFAR10_val, self).__init__(root, train=train,
transform=transform, target_transform=target_transform,
download=download)
# self.train_data = self.data[indexs]
# self.train_labels = np.array(self.targets)[indexs]
self.num_classes = 10
self.cfg_trainer = cfg_trainer
if train:
self.train_data = self.data[indexs]
self.train_labels = np.array(self.targets)[indexs]
else:
self.train_data = self.data
self.train_labels = np.array(self.targets)
self.train_labels_gt = self.train_labels.copy()
def symmetric_noise(self):
indices = np.random.permutation(len(self.train_data))
for i, idx in enumerate(indices):
if i < self.cfg_trainer['percent'] * len(self.train_data):
self.train_labels[idx] = np.random.randint(self.num_classes, dtype=np.int32)
def asymmetric_noise(self):
for i in range(self.num_classes):
indices = np.where(self.train_labels == i)[0]
np.random.shuffle(indices)
for j, idx in enumerate(indices):
if j < self.cfg_trainer['percent'] * len(indices):
# truck -> automobile
if i == 9:
self.train_labels[idx] = 1
# bird -> airplane
elif i == 2:
self.train_labels[idx] = 0
# cat -> dog
elif i == 3:
self.train_labels[idx] = 5
# dog -> cat
elif i == 5:
self.train_labels[idx] = 3
# deer -> horse
elif i == 4:
self.train_labels[idx] = 7
def __len__(self):
return len(self.train_data)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target, target_gt = self.train_data[index], self.train_labels[index], self.train_labels_gt[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index, target_gt