Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,926 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import numpy as np
|
4 |
+
import gc
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
import shutil
|
8 |
+
import hashlib
|
9 |
+
import pickle
|
10 |
+
import traceback
|
11 |
+
from typing import List, Dict, Any, Tuple, Optional, Union, Generator
|
12 |
+
from dataclasses import dataclass
|
13 |
+
import gradio as gr
|
14 |
+
|
15 |
+
# Install dependencies in the app.py file for Spaces
|
16 |
+
os.system("pip install -q pymupdf langchain langchain_community sentence-transformers faiss-cpu huggingface_hub")
|
17 |
+
os.system("pip install -q llama-cpp-python transformers rank_bm25 nltk")
|
18 |
+
os.system("pip install -q git+https://github.com/chroma-core/chroma.git")
|
19 |
+
|
20 |
+
# Import dependencies after installation
|
21 |
+
import fitz # PyMuPDF
|
22 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
23 |
+
from langchain_community.vectorstores import FAISS
|
24 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
25 |
+
from llama_cpp import Llama
|
26 |
+
from rank_bm25 import BM25Okapi
|
27 |
+
import nltk
|
28 |
+
from nltk.tokenize import word_tokenize
|
29 |
+
from nltk.corpus import stopwords
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
|
32 |
+
# Setup directories for Spaces
|
33 |
+
os.makedirs("pdfs", exist_ok=True)
|
34 |
+
os.makedirs("models", exist_ok=True)
|
35 |
+
os.makedirs("pdf_cache", exist_ok=True)
|
36 |
+
|
37 |
+
# Download nltk resources
|
38 |
+
try:
|
39 |
+
nltk.download('punkt', quiet=True)
|
40 |
+
nltk.download('stopwords', quiet=True)
|
41 |
+
except:
|
42 |
+
print("Failed to download NLTK resources, continuing without them")
|
43 |
+
|
44 |
+
# Download model from Hugging Face Hub
|
45 |
+
model_path = hf_hub_download(
|
46 |
+
repo_id="TheBloke/phi-2-GGUF",
|
47 |
+
filename="phi-2.Q8_0.gguf",
|
48 |
+
repo_type="model",
|
49 |
+
local_dir="models"
|
50 |
+
)
|
51 |
+
|
52 |
+
# === MEMORY MANAGEMENT UTILITIES ===
|
53 |
+
def clear_memory():
|
54 |
+
"""Clear memory to prevent OOM errors"""
|
55 |
+
gc.collect()
|
56 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
57 |
+
|
58 |
+
# === PDF PROCESSING ===
|
59 |
+
@dataclass
|
60 |
+
class PDFChunk:
|
61 |
+
"""Class to represent a chunk of text extracted from a PDF"""
|
62 |
+
text: str
|
63 |
+
source: str
|
64 |
+
page_num: int
|
65 |
+
chunk_id: int
|
66 |
+
|
67 |
+
class PDFProcessor:
|
68 |
+
def __init__(self, pdf_dir: str = "pdfs"):
|
69 |
+
"""Initialize PDF processor
|
70 |
+
|
71 |
+
Args:
|
72 |
+
pdf_dir: Directory containing PDF files
|
73 |
+
"""
|
74 |
+
self.pdf_dir = pdf_dir
|
75 |
+
# Smaller chunk size with more overlap for better retrieval
|
76 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
77 |
+
chunk_size=384,
|
78 |
+
chunk_overlap=288, # 75% overlap for better context preservation
|
79 |
+
length_function=len,
|
80 |
+
is_separator_regex=False,
|
81 |
+
)
|
82 |
+
|
83 |
+
# Create cache directory
|
84 |
+
self.cache_dir = os.path.join(os.getcwd(), "pdf_cache")
|
85 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
86 |
+
|
87 |
+
def list_pdfs(self) -> List[str]:
|
88 |
+
"""List all PDF files in the directory"""
|
89 |
+
if not os.path.exists(self.pdf_dir):
|
90 |
+
return []
|
91 |
+
return [f for f in os.listdir(self.pdf_dir) if f.lower().endswith('.pdf')]
|
92 |
+
|
93 |
+
def _get_cache_path(self, pdf_path: str) -> str:
|
94 |
+
"""Get the cache file path for a PDF"""
|
95 |
+
pdf_hash = hashlib.md5(open(pdf_path, 'rb').read(8192)).hexdigest()
|
96 |
+
return os.path.join(self.cache_dir, f"{os.path.basename(pdf_path)}_{pdf_hash}.pkl")
|
97 |
+
|
98 |
+
def _is_cached(self, pdf_path: str) -> bool:
|
99 |
+
"""Check if a PDF is cached"""
|
100 |
+
cache_path = self._get_cache_path(pdf_path)
|
101 |
+
return os.path.exists(cache_path)
|
102 |
+
|
103 |
+
def _load_from_cache(self, pdf_path: str) -> List[PDFChunk]:
|
104 |
+
"""Load chunks from cache"""
|
105 |
+
cache_path = self._get_cache_path(pdf_path)
|
106 |
+
try:
|
107 |
+
with open(cache_path, 'rb') as f:
|
108 |
+
return pickle.load(f)
|
109 |
+
except:
|
110 |
+
return None
|
111 |
+
|
112 |
+
def _save_to_cache(self, pdf_path: str, chunks: List[PDFChunk]) -> None:
|
113 |
+
"""Save chunks to cache"""
|
114 |
+
cache_path = self._get_cache_path(pdf_path)
|
115 |
+
try:
|
116 |
+
with open(cache_path, 'wb') as f:
|
117 |
+
pickle.dump(chunks, f)
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Warning: Failed to cache PDF {pdf_path}: {str(e)}")
|
120 |
+
|
121 |
+
def clean_text(self, text: str) -> str:
|
122 |
+
"""Clean extracted text"""
|
123 |
+
# Remove excessive whitespace
|
124 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
125 |
+
# Remove header/footer patterns (common in PDFs)
|
126 |
+
text = re.sub(r'(?<!\w)page \d+(?!\w)', '', text, flags=re.IGNORECASE)
|
127 |
+
return text
|
128 |
+
|
129 |
+
def extract_text_from_pdf(self, pdf_path: str) -> List[PDFChunk]:
|
130 |
+
"""Extract text content from a PDF file with improved extraction
|
131 |
+
|
132 |
+
Args:
|
133 |
+
pdf_path: Path to the PDF file
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
List of PDFChunk objects extracted from the PDF
|
137 |
+
"""
|
138 |
+
# Check cache first
|
139 |
+
if self._is_cached(pdf_path):
|
140 |
+
cached_chunks = self._load_from_cache(pdf_path)
|
141 |
+
if cached_chunks:
|
142 |
+
print(f"Loaded {len(cached_chunks)} chunks from cache for {os.path.basename(pdf_path)}")
|
143 |
+
return cached_chunks
|
144 |
+
|
145 |
+
try:
|
146 |
+
doc = fitz.open(pdf_path)
|
147 |
+
pdf_chunks = []
|
148 |
+
pdf_name = os.path.basename(pdf_path)
|
149 |
+
|
150 |
+
for page_num in range(len(doc)):
|
151 |
+
page = doc.load_page(page_num)
|
152 |
+
|
153 |
+
# Extract text with more options for better quality
|
154 |
+
page_text = page.get_text("text", sort=True)
|
155 |
+
# Try to extract text with alternative layout analysis if the text is too short
|
156 |
+
if len(page_text) < 100:
|
157 |
+
try:
|
158 |
+
page_text = page.get_text("dict", sort=True)
|
159 |
+
# Convert dict to text
|
160 |
+
if isinstance(page_text, dict) and "blocks" in page_text:
|
161 |
+
extracted_text = ""
|
162 |
+
for block in page_text["blocks"]:
|
163 |
+
if "lines" in block:
|
164 |
+
for line in block["lines"]:
|
165 |
+
if "spans" in line:
|
166 |
+
for span in line["spans"]:
|
167 |
+
if "text" in span:
|
168 |
+
extracted_text += span["text"] + " "
|
169 |
+
page_text = extracted_text
|
170 |
+
except:
|
171 |
+
# Fallback to default extraction
|
172 |
+
page_text = page.get_text("text")
|
173 |
+
|
174 |
+
# Clean the text
|
175 |
+
page_text = self.clean_text(page_text)
|
176 |
+
|
177 |
+
# Extract tables
|
178 |
+
try:
|
179 |
+
tables = page.find_tables()
|
180 |
+
if tables and hasattr(tables, "tables"):
|
181 |
+
for table in tables.tables:
|
182 |
+
table_text = ""
|
183 |
+
for i, row in enumerate(table.rows):
|
184 |
+
row_cells = []
|
185 |
+
for cell in row.cells:
|
186 |
+
if hasattr(cell, "rect"):
|
187 |
+
cell_text = page.get_text("text", clip=cell.rect)
|
188 |
+
cell_text = self.clean_text(cell_text)
|
189 |
+
row_cells.append(cell_text)
|
190 |
+
if row_cells:
|
191 |
+
table_text += " | ".join(row_cells) + "\n"
|
192 |
+
|
193 |
+
# Add table text to page text
|
194 |
+
if table_text.strip():
|
195 |
+
page_text += "\n\nTABLE:\n" + table_text
|
196 |
+
except Exception as table_err:
|
197 |
+
print(f"Warning: Skipping table extraction for page {page_num}: {str(table_err)}")
|
198 |
+
|
199 |
+
# Split the page text into chunks
|
200 |
+
if page_text.strip():
|
201 |
+
page_chunks = self.text_splitter.split_text(page_text)
|
202 |
+
|
203 |
+
# Create PDFChunk objects
|
204 |
+
for i, chunk_text in enumerate(page_chunks):
|
205 |
+
pdf_chunks.append(PDFChunk(
|
206 |
+
text=chunk_text,
|
207 |
+
source=pdf_name,
|
208 |
+
page_num=page_num + 1, # 1-based page numbering for humans
|
209 |
+
chunk_id=i
|
210 |
+
))
|
211 |
+
|
212 |
+
# Clear memory periodically
|
213 |
+
if page_num % 10 == 0:
|
214 |
+
clear_memory()
|
215 |
+
|
216 |
+
doc.close()
|
217 |
+
|
218 |
+
# Cache the results
|
219 |
+
self._save_to_cache(pdf_path, pdf_chunks)
|
220 |
+
|
221 |
+
return pdf_chunks
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Error extracting text from {pdf_path}: {str(e)}")
|
224 |
+
return []
|
225 |
+
|
226 |
+
def process_pdf(self, pdf_name: str) -> List[PDFChunk]:
|
227 |
+
"""Process a single PDF file and extract chunks
|
228 |
+
|
229 |
+
Args:
|
230 |
+
pdf_name: Name of the PDF file in the pdf_dir
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
List of PDFChunk objects from the PDF
|
234 |
+
"""
|
235 |
+
pdf_path = os.path.join(self.pdf_dir, pdf_name)
|
236 |
+
return self.extract_text_from_pdf(pdf_path)
|
237 |
+
|
238 |
+
def process_all_pdfs(self, batch_size: int = 2) -> List[PDFChunk]:
|
239 |
+
"""Process all PDFs in batches to manage memory
|
240 |
+
|
241 |
+
Args:
|
242 |
+
batch_size: Number of PDFs to process in each batch
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
List of all PDFChunk objects from all PDFs
|
246 |
+
"""
|
247 |
+
all_chunks = []
|
248 |
+
pdf_files = self.list_pdfs()
|
249 |
+
|
250 |
+
if not pdf_files:
|
251 |
+
print("No PDF files found in the directory.")
|
252 |
+
return []
|
253 |
+
|
254 |
+
# Process PDFs in batches
|
255 |
+
for i in range(0, len(pdf_files), batch_size):
|
256 |
+
batch = pdf_files[i:i+batch_size]
|
257 |
+
print(f"Processing batch {i//batch_size + 1}/{(len(pdf_files)-1)//batch_size + 1}")
|
258 |
+
|
259 |
+
for pdf_name in batch:
|
260 |
+
print(f"Processing {pdf_name}")
|
261 |
+
chunks = self.process_pdf(pdf_name)
|
262 |
+
all_chunks.extend(chunks)
|
263 |
+
print(f"Extracted {len(chunks)} chunks from {pdf_name}")
|
264 |
+
|
265 |
+
# Clear memory after each batch
|
266 |
+
clear_memory()
|
267 |
+
|
268 |
+
return all_chunks
|
269 |
+
|
270 |
+
# === VECTOR DATABASE SETUP ===
|
271 |
+
class VectorDBManager:
|
272 |
+
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
|
273 |
+
"""Initialize vector database manager
|
274 |
+
|
275 |
+
Args:
|
276 |
+
model_name: Name of the embedding model
|
277 |
+
"""
|
278 |
+
# Initialize embedding model with normalization
|
279 |
+
try:
|
280 |
+
self.embedding_model = HuggingFaceEmbeddings(
|
281 |
+
model_name=model_name,
|
282 |
+
model_kwargs={"device": "cpu"},
|
283 |
+
encode_kwargs={"normalize_embeddings": True}
|
284 |
+
)
|
285 |
+
except Exception as e:
|
286 |
+
print(f"Error initializing embedding model {model_name}: {str(e)}")
|
287 |
+
print("Falling back to all-MiniLM-L6-v2 model")
|
288 |
+
self.embedding_model = HuggingFaceEmbeddings(
|
289 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
290 |
+
model_kwargs={"device": "cpu"},
|
291 |
+
encode_kwargs={"normalize_embeddings": True}
|
292 |
+
)
|
293 |
+
|
294 |
+
self.vectordb = None
|
295 |
+
# BM25 index for hybrid search
|
296 |
+
self.bm25_index = None
|
297 |
+
self.chunks = []
|
298 |
+
self.tokenized_chunks = []
|
299 |
+
|
300 |
+
def _prepare_bm25(self, chunks: List[PDFChunk]):
|
301 |
+
"""Prepare BM25 index for hybrid search"""
|
302 |
+
# Tokenize chunks for BM25
|
303 |
+
try:
|
304 |
+
tokenized_chunks = []
|
305 |
+
for chunk in chunks:
|
306 |
+
# Tokenize and remove stopwords
|
307 |
+
tokens = word_tokenize(chunk.text.lower())
|
308 |
+
stop_words = set(stopwords.words('english'))
|
309 |
+
filtered_tokens = [w for w in tokens if w.isalnum() and w not in stop_words]
|
310 |
+
tokenized_chunks.append(filtered_tokens)
|
311 |
+
|
312 |
+
# Create BM25 index
|
313 |
+
self.bm25_index = BM25Okapi(tokenized_chunks)
|
314 |
+
except Exception as e:
|
315 |
+
print(f"Error creating BM25 index: {str(e)}")
|
316 |
+
print(traceback.format_exc())
|
317 |
+
self.bm25_index = None
|
318 |
+
|
319 |
+
def create_vector_db(self, chunks: List[PDFChunk]) -> None:
|
320 |
+
"""Create vector database from text chunks
|
321 |
+
|
322 |
+
Args:
|
323 |
+
chunks: List of PDFChunk objects
|
324 |
+
"""
|
325 |
+
try:
|
326 |
+
if not chunks or len(chunks) == 0:
|
327 |
+
print("ERROR: No chunks provided to create vector database")
|
328 |
+
return
|
329 |
+
|
330 |
+
print(f"Creating vector DB with {len(chunks)} chunks")
|
331 |
+
|
332 |
+
# Store chunks for hybrid search
|
333 |
+
self.chunks = chunks
|
334 |
+
|
335 |
+
# Prepare data for vector DB
|
336 |
+
chunk_texts = [chunk.text for chunk in chunks]
|
337 |
+
|
338 |
+
# Create BM25 index for hybrid search
|
339 |
+
print("Creating BM25 index for hybrid search")
|
340 |
+
self._prepare_bm25(chunks)
|
341 |
+
|
342 |
+
# Process in smaller batches to manage memory
|
343 |
+
batch_size = 16 # Reduced for Spaces
|
344 |
+
all_embeddings = []
|
345 |
+
|
346 |
+
for i in range(0, len(chunk_texts), batch_size):
|
347 |
+
batch = chunk_texts[i:i+batch_size]
|
348 |
+
print(f"Embedding batch {i//batch_size + 1}/{(len(chunk_texts)-1)//batch_size + 1}")
|
349 |
+
|
350 |
+
# Generate embeddings for the batch
|
351 |
+
batch_embeddings = self.embedding_model.embed_documents(batch)
|
352 |
+
all_embeddings.extend(batch_embeddings)
|
353 |
+
|
354 |
+
# Clear memory after each batch
|
355 |
+
clear_memory()
|
356 |
+
|
357 |
+
# Create FAISS index
|
358 |
+
print(f"Creating FAISS index with {len(all_embeddings)} embeddings")
|
359 |
+
self.vectordb = FAISS.from_embeddings(
|
360 |
+
text_embeddings=list(zip(chunk_texts, all_embeddings)),
|
361 |
+
embedding=self.embedding_model
|
362 |
+
)
|
363 |
+
|
364 |
+
print(f"Vector database created with {len(chunks)} documents")
|
365 |
+
|
366 |
+
except Exception as e:
|
367 |
+
print(f"Error creating vector database: {str(e)}")
|
368 |
+
print(traceback.format_exc())
|
369 |
+
raise
|
370 |
+
|
371 |
+
def _format_chunk_with_metadata(self, chunk: PDFChunk) -> str:
|
372 |
+
"""Format a chunk with its metadata for better context"""
|
373 |
+
return f"Source: {chunk.source} | Page: {chunk.page_num}\n\n{chunk.text}"
|
374 |
+
|
375 |
+
def hybrid_search(self, query: str, k: int = 5, alpha: float = 0.7) -> List[str]:
|
376 |
+
"""Hybrid search combining vector search and BM25
|
377 |
+
|
378 |
+
Args:
|
379 |
+
query: Query text
|
380 |
+
k: Number of results to return
|
381 |
+
alpha: Weight for vector search (1-alpha for BM25)
|
382 |
+
|
383 |
+
Returns:
|
384 |
+
List of formatted documents
|
385 |
+
"""
|
386 |
+
if self.vectordb is None:
|
387 |
+
print("Vector database not initialized")
|
388 |
+
return []
|
389 |
+
|
390 |
+
try:
|
391 |
+
# Get vector search results
|
392 |
+
vector_results = self.vectordb.similarity_search(query, k=k*2)
|
393 |
+
vector_texts = [doc.page_content for doc in vector_results]
|
394 |
+
|
395 |
+
final_results = []
|
396 |
+
|
397 |
+
# Combine with BM25 if available
|
398 |
+
if self.bm25_index is not None:
|
399 |
+
try:
|
400 |
+
# Tokenize query for BM25
|
401 |
+
query_tokens = word_tokenize(query.lower())
|
402 |
+
stop_words = set(stopwords.words('english'))
|
403 |
+
filtered_query = [w for w in query_tokens if w.isalnum() and w not in stop_words]
|
404 |
+
|
405 |
+
# Get BM25 scores
|
406 |
+
bm25_scores = self.bm25_index.get_scores(filtered_query)
|
407 |
+
|
408 |
+
# Combine scores (normalized)
|
409 |
+
combined_results = []
|
410 |
+
seen_texts = set()
|
411 |
+
|
412 |
+
# First add vector results with their positions as scores
|
413 |
+
for i, text in enumerate(vector_texts):
|
414 |
+
if text not in seen_texts:
|
415 |
+
seen_texts.add(text)
|
416 |
+
# Find corresponding chunk
|
417 |
+
for j, chunk in enumerate(self.chunks):
|
418 |
+
if chunk.text == text:
|
419 |
+
# Combine scores: alpha * vector_score + (1-alpha) * bm25_score
|
420 |
+
# For vector, use inverse of position as score (normalized)
|
421 |
+
vector_score = 1.0 - (i / len(vector_texts))
|
422 |
+
# Normalize BM25 score
|
423 |
+
bm25_score = bm25_scores[j] / max(bm25_scores) if max(bm25_scores) > 0 else 0
|
424 |
+
combined_score = alpha * vector_score + (1-alpha) * bm25_score
|
425 |
+
|
426 |
+
combined_results.append((chunk, combined_score))
|
427 |
+
break
|
428 |
+
|
429 |
+
# Sort by combined score
|
430 |
+
combined_results.sort(key=lambda x: x[1], reverse=True)
|
431 |
+
|
432 |
+
# Get top k results
|
433 |
+
top_chunks = [item[0] for item in combined_results[:k]]
|
434 |
+
|
435 |
+
# Format results with metadata
|
436 |
+
final_results = [self._format_chunk_with_metadata(chunk) for chunk in top_chunks]
|
437 |
+
except Exception as e:
|
438 |
+
print(f"Error in BM25 scoring: {str(e)}")
|
439 |
+
# Fallback to vector search results
|
440 |
+
final_results = vector_texts[:k]
|
441 |
+
else:
|
442 |
+
# Just use vector search results if BM25 is not available
|
443 |
+
final_results = vector_texts[:k]
|
444 |
+
|
445 |
+
return final_results
|
446 |
+
except Exception as e:
|
447 |
+
print(f"Error during hybrid search: {str(e)}")
|
448 |
+
return []
|
449 |
+
|
450 |
+
# === QUERY EXPANSION ===
|
451 |
+
class QueryExpander:
|
452 |
+
def __init__(self, llm_model):
|
453 |
+
"""Initialize query expander
|
454 |
+
|
455 |
+
Args:
|
456 |
+
llm_model: LLM model for query expansion
|
457 |
+
"""
|
458 |
+
self.llm = llm_model
|
459 |
+
|
460 |
+
def expand_query(self, query: str) -> str:
|
461 |
+
"""Expand the query using the LLM to improve retrieval
|
462 |
+
|
463 |
+
Args:
|
464 |
+
query: Original query
|
465 |
+
|
466 |
+
Returns:
|
467 |
+
Expanded query
|
468 |
+
"""
|
469 |
+
try:
|
470 |
+
prompt = f"""I need to search for documents related to this question: "{query}"
|
471 |
+
|
472 |
+
Please help me expand this query by identifying key concepts, synonyms, and related terms that might be used in the documents.
|
473 |
+
Return only the expanded search query, without any explanations or additional text.
|
474 |
+
|
475 |
+
Expanded query:"""
|
476 |
+
|
477 |
+
expanded = self.llm.generate(prompt, max_tokens=100, temperature=0.3)
|
478 |
+
|
479 |
+
# Combine original and expanded
|
480 |
+
combined = f"{query} {expanded}"
|
481 |
+
|
482 |
+
# Limit length
|
483 |
+
if len(combined) > 300:
|
484 |
+
combined = combined[:300]
|
485 |
+
|
486 |
+
return combined
|
487 |
+
except:
|
488 |
+
# Return original query if expansion fails
|
489 |
+
return query
|
490 |
+
|
491 |
+
# === LLM SETUP ===
|
492 |
+
class Phi2Model:
|
493 |
+
def __init__(self, model_path: str = model_path):
|
494 |
+
"""Initialize Phi-2 model
|
495 |
+
|
496 |
+
Args:
|
497 |
+
model_path: Path to the model file
|
498 |
+
"""
|
499 |
+
try:
|
500 |
+
# Initialize Phi-2 with llama.cpp - optimized for Spaces
|
501 |
+
self.llm = Llama(
|
502 |
+
model_path=model_path,
|
503 |
+
n_ctx=1024, # Reduced context window for Spaces
|
504 |
+
n_batch=64, # Reduced batch size
|
505 |
+
n_gpu_layers=0, # Run on CPU for compatibility
|
506 |
+
verbose=False
|
507 |
+
)
|
508 |
+
except Exception as e:
|
509 |
+
print(f"Error initializing Phi-2 model: {str(e)}")
|
510 |
+
raise
|
511 |
+
|
512 |
+
def generate(self, prompt: str,
|
513 |
+
max_tokens: int = 512,
|
514 |
+
temperature: float = 0.7,
|
515 |
+
top_p: float = 0.9,
|
516 |
+
stream: bool = False) -> Union[str, Generator[str, None, None]]:
|
517 |
+
"""Generate text using Phi-2
|
518 |
+
|
519 |
+
Args:
|
520 |
+
prompt: Input prompt
|
521 |
+
max_tokens: Maximum number of tokens to generate
|
522 |
+
temperature: Sampling temperature
|
523 |
+
top_p: Top-p sampling parameter
|
524 |
+
stream: Whether to stream the output
|
525 |
+
|
526 |
+
Returns:
|
527 |
+
Generated text or generator if streaming
|
528 |
+
"""
|
529 |
+
try:
|
530 |
+
if stream:
|
531 |
+
return self._generate_stream(prompt, max_tokens, temperature, top_p)
|
532 |
+
else:
|
533 |
+
output = self.llm(
|
534 |
+
prompt,
|
535 |
+
max_tokens=max_tokens,
|
536 |
+
temperature=temperature,
|
537 |
+
top_p=top_p,
|
538 |
+
echo=False
|
539 |
+
)
|
540 |
+
return output["choices"][0]["text"]
|
541 |
+
except Exception as e:
|
542 |
+
print(f"Error generating text: {str(e)}")
|
543 |
+
return "Error: Could not generate response."
|
544 |
+
|
545 |
+
def _generate_stream(self, prompt: str,
|
546 |
+
max_tokens: int = 512,
|
547 |
+
temperature: float = 0.7,
|
548 |
+
top_p: float = 0.9) -> Generator[str, None, None]:
|
549 |
+
"""Stream text generation using Phi-2
|
550 |
+
|
551 |
+
Args:
|
552 |
+
prompt: Input prompt
|
553 |
+
max_tokens: Maximum number of tokens to generate
|
554 |
+
temperature: Sampling temperature
|
555 |
+
top_p: Top-p sampling parameter
|
556 |
+
|
557 |
+
Yields:
|
558 |
+
Generated text tokens
|
559 |
+
"""
|
560 |
+
response = ""
|
561 |
+
for output in self.llm(
|
562 |
+
prompt,
|
563 |
+
max_tokens=max_tokens,
|
564 |
+
temperature=temperature,
|
565 |
+
top_p=top_p,
|
566 |
+
echo=False,
|
567 |
+
stream=True
|
568 |
+
):
|
569 |
+
token = output["choices"][0]["text"]
|
570 |
+
response += token
|
571 |
+
yield response
|
572 |
+
|
573 |
+
# === RAG SYSTEM ===
|
574 |
+
class RAGSystem:
|
575 |
+
def __init__(self, pdf_processor: PDFProcessor,
|
576 |
+
vector_db: VectorDBManager,
|
577 |
+
model: Phi2Model):
|
578 |
+
"""Initialize RAG system
|
579 |
+
|
580 |
+
Args:
|
581 |
+
pdf_processor: PDF processor instance
|
582 |
+
vector_db: Vector database manager instance
|
583 |
+
model: LLM model instance
|
584 |
+
"""
|
585 |
+
self.pdf_processor = pdf_processor
|
586 |
+
self.vector_db = vector_db
|
587 |
+
self.model = model
|
588 |
+
self.query_expander = QueryExpander(model)
|
589 |
+
self.is_initialized = False
|
590 |
+
|
591 |
+
def process_documents(self) -> bool:
|
592 |
+
"""Process all documents and create vector database
|
593 |
+
|
594 |
+
Returns:
|
595 |
+
True if successful, False otherwise
|
596 |
+
"""
|
597 |
+
try:
|
598 |
+
# Process PDFs
|
599 |
+
chunks = self.pdf_processor.process_all_pdfs()
|
600 |
+
if not chunks:
|
601 |
+
print("No chunks were extracted from PDFs")
|
602 |
+
return False
|
603 |
+
|
604 |
+
print(f"Total chunks extracted: {len(chunks)}")
|
605 |
+
|
606 |
+
# Create vector database
|
607 |
+
print("Creating vector database...")
|
608 |
+
self.vector_db.create_vector_db(chunks)
|
609 |
+
|
610 |
+
# Verify success
|
611 |
+
if self.vector_db.vectordb is None:
|
612 |
+
print("Failed to create vector database")
|
613 |
+
return False
|
614 |
+
|
615 |
+
# Set initialization flag
|
616 |
+
self.is_initialized = True
|
617 |
+
return True
|
618 |
+
|
619 |
+
except Exception as e:
|
620 |
+
print(f"Error processing documents: {str(e)}")
|
621 |
+
print(traceback.format_exc())
|
622 |
+
return False
|
623 |
+
|
624 |
+
def generate_prompt(self, query: str, contexts: List[str]) -> str:
|
625 |
+
"""Generate prompt for the LLM with better instructions
|
626 |
+
|
627 |
+
Args:
|
628 |
+
query: User query
|
629 |
+
contexts: Retrieved contexts
|
630 |
+
|
631 |
+
Returns:
|
632 |
+
Formatted prompt
|
633 |
+
"""
|
634 |
+
# Format contexts with numbering for better reference
|
635 |
+
formatted_contexts = ""
|
636 |
+
for i, context in enumerate(contexts):
|
637 |
+
formatted_contexts += f"[CONTEXT {i+1}]\n{context}\n\n"
|
638 |
+
|
639 |
+
# Create prompt with better instructions
|
640 |
+
prompt = f"""You are an AI assistant that answers questions based on the provided context information.
|
641 |
+
|
642 |
+
User Query: {query}
|
643 |
+
|
644 |
+
Below are relevant passages from documents that might help answer the query:
|
645 |
+
|
646 |
+
{formatted_contexts}
|
647 |
+
|
648 |
+
Using ONLY the information provided in the context above, provide a comprehensive answer to the user's query.
|
649 |
+
If the provided context doesn't contain relevant information to answer the query, clearly state: "I don't have enough information in the provided context to answer this question."
|
650 |
+
|
651 |
+
Do not use any prior knowledge that is not contained in the provided context.
|
652 |
+
If quoting from the context, mention the source document and page number.
|
653 |
+
Organize your answer in a clear, coherent manner.
|
654 |
+
|
655 |
+
Answer:"""
|
656 |
+
return prompt
|
657 |
+
|
658 |
+
def answer_query(self, query: str, k: int = 5, max_tokens: int = 512,
|
659 |
+
temperature: float = 0.7, stream: bool = False) -> Union[str, Generator[str, None, None]]:
|
660 |
+
"""Answer a query using RAG with query expansion
|
661 |
+
|
662 |
+
Args:
|
663 |
+
query: User query
|
664 |
+
k: Number of contexts to retrieve
|
665 |
+
max_tokens: Maximum number of tokens to generate
|
666 |
+
temperature: Temperature for generation
|
667 |
+
stream: Whether to stream the output
|
668 |
+
|
669 |
+
Returns:
|
670 |
+
Answer text or generator if streaming
|
671 |
+
"""
|
672 |
+
# Check if system is initialized
|
673 |
+
if not self.is_initialized or self.vector_db.vectordb is None:
|
674 |
+
return "Error: Documents have not been processed yet. Please process documents first."
|
675 |
+
|
676 |
+
try:
|
677 |
+
# Expand query for better retrieval
|
678 |
+
expanded_query = self.query_expander.expand_query(query)
|
679 |
+
print(f"Expanded query: {expanded_query}")
|
680 |
+
|
681 |
+
# Retrieve relevant contexts using hybrid search
|
682 |
+
contexts = self.vector_db.hybrid_search(expanded_query, k=k)
|
683 |
+
|
684 |
+
if not contexts:
|
685 |
+
return "No relevant information found in the documents. Please try a different query or check if documents were processed correctly."
|
686 |
+
|
687 |
+
# Generate prompt with improved instructions
|
688 |
+
prompt = self.generate_prompt(query, contexts)
|
689 |
+
|
690 |
+
# Generate answer
|
691 |
+
return self.model.generate(
|
692 |
+
prompt,
|
693 |
+
max_tokens=max_tokens,
|
694 |
+
temperature=temperature,
|
695 |
+
stream=stream
|
696 |
+
)
|
697 |
+
except Exception as e:
|
698 |
+
print(f"Error answering query: {str(e)}")
|
699 |
+
print(traceback.format_exc())
|
700 |
+
return f"Error processing your query: {str(e)}"
|
701 |
+
|
702 |
+
# === GRADIO INTERFACE ===
|
703 |
+
class RAGInterface:
|
704 |
+
def __init__(self, rag_system: RAGSystem):
|
705 |
+
"""Initialize Gradio interface
|
706 |
+
|
707 |
+
Args:
|
708 |
+
rag_system: RAG system instance
|
709 |
+
"""
|
710 |
+
self.rag_system = rag_system
|
711 |
+
self.interface = None
|
712 |
+
self.is_processing = False
|
713 |
+
|
714 |
+
def upload_file(self, files):
|
715 |
+
"""Upload PDF files"""
|
716 |
+
try:
|
717 |
+
os.makedirs("pdfs", exist_ok=True)
|
718 |
+
uploaded_files = []
|
719 |
+
|
720 |
+
for file in files:
|
721 |
+
destination = os.path.join("pdfs", os.path.basename(file.name))
|
722 |
+
shutil.copy(file.name, destination)
|
723 |
+
uploaded_files.append(os.path.basename(file.name))
|
724 |
+
|
725 |
+
# Verify files exist in the directory
|
726 |
+
pdf_files = [f for f in os.listdir("pdfs") if f.lower().endswith('.pdf')]
|
727 |
+
|
728 |
+
if not pdf_files:
|
729 |
+
return "No PDF files were uploaded successfully."
|
730 |
+
|
731 |
+
return f"Successfully uploaded {len(uploaded_files)} files: {', '.join(uploaded_files)}"
|
732 |
+
except Exception as e:
|
733 |
+
return f"Error uploading files: {str(e)}"
|
734 |
+
|
735 |
+
def process_documents(self):
|
736 |
+
"""Process all documents
|
737 |
+
|
738 |
+
Returns:
|
739 |
+
Status message
|
740 |
+
"""
|
741 |
+
if self.is_processing:
|
742 |
+
return "Document processing is already in progress. Please wait."
|
743 |
+
|
744 |
+
try:
|
745 |
+
self.is_processing = True
|
746 |
+
start_time = time.time()
|
747 |
+
|
748 |
+
success = self.rag_system.process_documents()
|
749 |
+
|
750 |
+
elapsed = time.time() - start_time
|
751 |
+
self.is_processing = False
|
752 |
+
|
753 |
+
if success:
|
754 |
+
return f"Documents processed successfully in {elapsed:.2f} seconds."
|
755 |
+
else:
|
756 |
+
return "Failed to process documents. Check the logs for more information."
|
757 |
+
except Exception as e:
|
758 |
+
self.is_processing = False
|
759 |
+
return f"Error processing documents: {str(e)}"
|
760 |
+
|
761 |
+
def answer_query(self, query, k, max_tokens, temperature):
|
762 |
+
"""Answer a query
|
763 |
+
|
764 |
+
Args:
|
765 |
+
query: User query
|
766 |
+
k: Number of contexts to retrieve
|
767 |
+
max_tokens: Maximum number of tokens to generate
|
768 |
+
temperature: Sampling temperature
|
769 |
+
|
770 |
+
Returns:
|
771 |
+
Answer
|
772 |
+
"""
|
773 |
+
if not query.strip():
|
774 |
+
return "Please enter a question."
|
775 |
+
|
776 |
+
try:
|
777 |
+
return self.rag_system.answer_query(
|
778 |
+
query,
|
779 |
+
k=k,
|
780 |
+
max_tokens=max_tokens,
|
781 |
+
temperature=temperature,
|
782 |
+
stream=False
|
783 |
+
)
|
784 |
+
except Exception as e:
|
785 |
+
return f"Error answering query: {str(e)}"
|
786 |
+
|
787 |
+
def answer_query_stream(self, query, k, max_tokens, temperature):
|
788 |
+
"""Stream answer to a query
|
789 |
+
|
790 |
+
Args:
|
791 |
+
query: User query
|
792 |
+
k: Number of contexts to retrieve
|
793 |
+
max_tokens: Maximum number of tokens to generate
|
794 |
+
temperature: Sampling temperature
|
795 |
+
|
796 |
+
Yields:
|
797 |
+
Generated text
|
798 |
+
"""
|
799 |
+
if not query.strip():
|
800 |
+
yield "Please enter a question."
|
801 |
+
return
|
802 |
+
|
803 |
+
try:
|
804 |
+
yield from self.rag_system.answer_query(
|
805 |
+
query,
|
806 |
+
k=k,
|
807 |
+
max_tokens=max_tokens,
|
808 |
+
temperature=temperature,
|
809 |
+
stream=True
|
810 |
+
)
|
811 |
+
except Exception as e:
|
812 |
+
yield f"Error answering query: {str(e)}"
|
813 |
+
|
814 |
+
def create_interface(self):
|
815 |
+
"""Create Gradio interface"""
|
816 |
+
with gr.Blocks(title="PDF RAG System") as interface:
|
817 |
+
gr.Markdown("# PDF RAG System with Phi-2")
|
818 |
+
gr.Markdown("Upload your PDF documents, process them, and ask questions to get answers based on the content.")
|
819 |
+
|
820 |
+
with gr.Tab("Upload & Process"):
|
821 |
+
with gr.Row():
|
822 |
+
pdf_files = gr.File(
|
823 |
+
file_count="multiple",
|
824 |
+
label="Upload PDF Files",
|
825 |
+
file_types=[".pdf"]
|
826 |
+
)
|
827 |
+
upload_button = gr.Button("Upload", variant="primary")
|
828 |
+
|
829 |
+
upload_output = gr.Textbox(label="Upload Status", lines=2)
|
830 |
+
upload_button.click(self.upload_file, inputs=[pdf_files], outputs=upload_output)
|
831 |
+
|
832 |
+
process_button = gr.Button("Process Documents", variant="primary")
|
833 |
+
process_output = gr.Textbox(label="Processing Status", lines=2)
|
834 |
+
process_button.click(self.process_documents, inputs=[], outputs=process_output)
|
835 |
+
|
836 |
+
with gr.Tab("Query"):
|
837 |
+
with gr.Row():
|
838 |
+
with gr.Column():
|
839 |
+
query_input = gr.Textbox(
|
840 |
+
label="Question",
|
841 |
+
lines=3,
|
842 |
+
placeholder="Ask a question about your documents..."
|
843 |
+
)
|
844 |
+
with gr.Row():
|
845 |
+
k_slider = gr.Slider(
|
846 |
+
minimum=1,
|
847 |
+
maximum=10,
|
848 |
+
value=3,
|
849 |
+
step=1,
|
850 |
+
label="Number of Contexts"
|
851 |
+
)
|
852 |
+
max_tokens_slider = gr.Slider(
|
853 |
+
minimum=100,
|
854 |
+
maximum=800,
|
855 |
+
value=400,
|
856 |
+
step=50,
|
857 |
+
label="Max Tokens"
|
858 |
+
)
|
859 |
+
temperature_slider = gr.Slider(
|
860 |
+
minimum=0.1,
|
861 |
+
maximum=1.0,value=0.7,
|
862 |
+
step=0.1,
|
863 |
+
label="Temperature"
|
864 |
+
)
|
865 |
+
submit_button = gr.Button("Submit", variant="primary")
|
866 |
+
|
867 |
+
answer_output = gr.Textbox(label="Answer", lines=10)
|
868 |
+
|
869 |
+
submit_button.click(
|
870 |
+
self.answer_query,
|
871 |
+
inputs=[query_input, k_slider, max_tokens_slider, temperature_slider],
|
872 |
+
outputs=answer_output
|
873 |
+
)
|
874 |
+
|
875 |
+
# Add streaming capability
|
876 |
+
stream_button = gr.Button("Submit (Streaming)", variant="secondary")
|
877 |
+
stream_button.click(
|
878 |
+
self.answer_query_stream,
|
879 |
+
inputs=[query_input, k_slider, max_tokens_slider, temperature_slider],
|
880 |
+
outputs=answer_output
|
881 |
+
)
|
882 |
+
|
883 |
+
gr.Markdown("""
|
884 |
+
## Instructions
|
885 |
+
1. Upload PDF files in the 'Upload & Process' tab.
|
886 |
+
2. Click the 'Process Documents' button to extract and index content.
|
887 |
+
3. Switch to the 'Query' tab to ask questions about your documents.
|
888 |
+
4. Adjust parameters as needed:
|
889 |
+
- Number of Contexts: More contexts provide more information but may be less focused.
|
890 |
+
- Max Tokens: Controls the length of the response.
|
891 |
+
- Temperature: Lower values (0.1-0.5) give more focused answers, higher values (0.6-1.0) give more creative answers.
|
892 |
+
""")
|
893 |
+
|
894 |
+
self.interface = interface
|
895 |
+
return interface
|
896 |
+
|
897 |
+
def launch(self, **kwargs):
|
898 |
+
"""Launch the Gradio interface"""
|
899 |
+
if self.interface is None:
|
900 |
+
self.create_interface()
|
901 |
+
self.interface.launch(**kwargs)
|
902 |
+
|
903 |
+
# === MAIN APPLICATION ===
|
904 |
+
def main():
|
905 |
+
"""Main function to set up and launch the application"""
|
906 |
+
try:
|
907 |
+
# Initialize components
|
908 |
+
pdf_processor = PDFProcessor(pdf_dir="pdfs")
|
909 |
+
vector_db = VectorDBManager()
|
910 |
+
phi2_model = Phi2Model()
|
911 |
+
|
912 |
+
# Initialize RAG system
|
913 |
+
rag_system = RAGSystem(pdf_processor, vector_db, phi2_model)
|
914 |
+
|
915 |
+
# Create interface
|
916 |
+
interface = RAGInterface(rag_system)
|
917 |
+
|
918 |
+
# Launch application
|
919 |
+
interface.launch(share=True)
|
920 |
+
|
921 |
+
except Exception as e:
|
922 |
+
print(f"Error initializing application: {str(e)}")
|
923 |
+
print(traceback.format_exc())
|
924 |
+
|
925 |
+
if __name__ == "__main__":
|
926 |
+
main()
|