Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,12 +11,15 @@ try:
|
|
11 |
inpaint_model = DiffusionPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1").to(device)
|
12 |
except Exception as e:
|
13 |
print(f"Error initializing model: {e}")
|
|
|
14 |
|
15 |
def process_image(prompt, image, style, upscale_factor, inpaint):
|
16 |
try:
|
17 |
# Ensure the image is in the correct format
|
18 |
if image is not None:
|
19 |
image = image.convert("RGB")
|
|
|
|
|
20 |
|
21 |
# Log the input parameters
|
22 |
print(f"Prompt: {prompt}")
|
@@ -26,11 +29,11 @@ def process_image(prompt, image, style, upscale_factor, inpaint):
|
|
26 |
|
27 |
# Example placeholder logic for using the pipeline
|
28 |
# Replace with actual pipeline logic based on selected style
|
29 |
-
if inpaint:
|
30 |
result = inpaint_model(prompt=prompt, image=image, guidance_scale=7.5)
|
31 |
else:
|
32 |
-
result = inpaint_model(prompt=prompt, guidance_scale=7.5)
|
33 |
-
|
34 |
# Check if the result is valid
|
35 |
if result and hasattr(result, 'images') and len(result.images) > 0:
|
36 |
return result.images[0]
|
@@ -38,7 +41,9 @@ def process_image(prompt, image, style, upscale_factor, inpaint):
|
|
38 |
return "Error: No image returned from model."
|
39 |
|
40 |
except Exception as e:
|
41 |
-
|
|
|
|
|
42 |
|
43 |
# Define the Gradio interface
|
44 |
with gr.Blocks() as demo:
|
|
|
11 |
inpaint_model = DiffusionPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1").to(device)
|
12 |
except Exception as e:
|
13 |
print(f"Error initializing model: {e}")
|
14 |
+
inpaint_model = None
|
15 |
|
16 |
def process_image(prompt, image, style, upscale_factor, inpaint):
|
17 |
try:
|
18 |
# Ensure the image is in the correct format
|
19 |
if image is not None:
|
20 |
image = image.convert("RGB")
|
21 |
+
else:
|
22 |
+
image = None
|
23 |
|
24 |
# Log the input parameters
|
25 |
print(f"Prompt: {prompt}")
|
|
|
29 |
|
30 |
# Example placeholder logic for using the pipeline
|
31 |
# Replace with actual pipeline logic based on selected style
|
32 |
+
if inpaint and inpaint_model:
|
33 |
result = inpaint_model(prompt=prompt, image=image, guidance_scale=7.5)
|
34 |
else:
|
35 |
+
result = inpaint_model(prompt=prompt, guidance_scale=7.5) if inpaint_model else None
|
36 |
+
|
37 |
# Check if the result is valid
|
38 |
if result and hasattr(result, 'images') and len(result.images) > 0:
|
39 |
return result.images[0]
|
|
|
41 |
return "Error: No image returned from model."
|
42 |
|
43 |
except Exception as e:
|
44 |
+
error_message = f"Error in process_image function: {e}"
|
45 |
+
print(error_message)
|
46 |
+
return error_message
|
47 |
|
48 |
# Define the Gradio interface
|
49 |
with gr.Blocks() as demo:
|