import tensorflow as tf from keras.models import load_model import gradio as gr from matplotlib import pyplot as plt import cv2 import numpy as np model = load_model('eee4.keras') def image_mod(image): raw_image = image temp_image = "temporary_image.jpg" cv2.imwrite(temp_image, raw_image) img = cv2.imread("temporary_image.jpg") resize = tf.image.resize(img, (256, 256)) plt.imshow(resize.numpy().astype(int)) yhat = model.predict(np.expand_dims(resize,0)) display_old = np.argmax(yhat) display = str(display_old) #display = str(yhat) #display = str(display) if display == "0": message = "Cloudy" # if display == "1": message = "Snowy" # Morning_fog_-_Flickr_-_tmoravec.jpg if display == "2": message = "Foggy" # Stuyvesant_Fish_House_25_E78_St_cloudy_jeh.jpg if display == "3": message = "Rainy" #Snow_on_Branches,_Beechview,_2020-12-17,_01.jpg if display == "4": message = "Sunny" # Daedalus_000355_171913_516869_4578_(36155269413).jpg return message gr.Interface(fn=image_mod, inputs=gr.Image(shape=(256, 256)), outputs=gr.Label(num_top_classes=3), examples=["640px-Hopetoun_house_sunny_day.jpg","Panoramic_of_water_reflection_of_the_mountains_of_Vang_Vieng_with_cloudy_sky_in_paddy_fields.jpg","Snow_Scene_at_Shipka_Pass_1.JPG","Jida,_Zhuhai,_rainy_day.jpg","The_lift_bridge_on_Cherry_Street_over_the_ship_channel_to_the_Turning_Basin_on_a_foggy_day,_2012-03-17_-a.jpg"]).launch()