import tensorflow as tf from keras.models import load_model import gradio as gr from matplotlib import pyplot as plt import cv2 import numpy as np model = load_model('eee.keras') def image_mod(image_mod): img = cv2.imread("640px-Snow_cars_2012_G1.jpg") resize = tf.image.resize(img, (256, 256)) plt.imshow(resize.numpy().astype(int)) yhat = model.predict(np.expand_dims(resize,0)) display = np.argmax(yhat) display = str(display) if display == "0": message = "Rainy" # Jida,_Zhuhai,_rainy_day.jpg if display == "1": message = "Foggy" if display == "2": message = "Cloudy" if display == "3": message = "Snowy" if display == "4": message = "Sunny" # Daedalus_000355_171913_516869_4578_(36155269413).jpg return message gr.Interface(fn=image_mod, inputs=gr.Image(shape=(256, 256)), outputs=gr.Label(num_top_classes=3), examples=["Daedalus_000355_171913_516869_4578_(36155269413).jpg","Utah_solar;_a_photovoltaic_power_station_(36293687776).jpg","Foggy_day_of_Riga.jpg","Jida,_Zhuhai,_rainy_day.jpg","640px-Snow_cars_2012_G1.jpg"]).launch()