File size: 1,540 Bytes
3ff10a0
ab3f808
a4fcc7e
559ec57
24d3233
b9cfa97
c7b6b57
24d3233
0a761bc
93eec9d
e6ac0b5
 
56d3554
 
0e74aec
 
 
f6e3071
 
 
8b79954
2849234
8b79954
2849234
8b79954
2849234
8b79954
2849234
8b79954
2849234
8b79954
2849234
a4fcc7e
d365b80
98224c2
cd13712
8b79954
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import tensorflow as tf
from keras.models import load_model
import gradio as gr
from matplotlib import pyplot as plt
import cv2
import numpy as np
model = load_model('eee4.keras')

def image_mod(image):
    raw_image = image
    temp_image = "temporary_image.jpg"
    cv2.imwrite(temp_image, raw_image)
    
    img = cv2.imread("temporary_image.jpg")
    resize = tf.image.resize(img, (256, 256))
    plt.imshow(resize.numpy().astype(int))
    yhat = model.predict(np.expand_dims(resize,0))
    display_old = np.argmax(yhat)
    display = str(display_old)
    #display = str(yhat)
    #display = str(display)
    if display == "0":
        message = "Cloudy" # 
    if display == "1":
        message = "Snowy" # Morning_fog_-_Flickr_-_tmoravec.jpg
    if display == "2":
        message = "Foggy" # Stuyvesant_Fish_House_25_E78_St_cloudy_jeh.jpg
    if display == "3":
        message = "Rainy" #Snow_on_Branches,_Beechview,_2020-12-17,_01.jpg
    if display == "4":
        message = "Sunny" # Daedalus_000355_171913_516869_4578_(36155269413).jpg
    return message

gr.Interface(fn=image_mod,
             inputs=gr.Image(shape=(256, 256)),
             outputs=gr.Label(num_top_classes=3),
             examples=["640px-Hopetoun_house_sunny_day.jpg","Panoramic_of_water_reflection_of_the_mountains_of_Vang_Vieng_with_cloudy_sky_in_paddy_fields.jpg","Snow_Scene_at_Shipka_Pass_1.JPG","Jida,_Zhuhai,_rainy_day.jpg","The_lift_bridge_on_Cherry_Street_over_the_ship_channel_to_the_Turning_Basin_on_a_foggy_day,_2012-03-17_-a.jpg"]).launch()