File size: 7,687 Bytes
68c260d c97b47f 68c260d c97b47f 68c260d 1f53a43 c97b47f 68c260d c97b47f 1f53a43 c97b47f 1f53a43 c97b47f 1f53a43 68c260d c97b47f 68c260d c97b47f 1f53a43 c97b47f 68c260d c97b47f 1f53a43 68c260d c97b47f 68c260d 1f53a43 c97b47f 1f53a43 68c260d 1f53a43 68c260d c97b47f 68c260d c97b47f 68c260d c97b47f 68c260d c97b47f 68c260d c97b47f 68c260d c97b47f 1f53a43 c97b47f 1f53a43 c97b47f 1f53a43 c97b47f 1f53a43 c97b47f 1f53a43 c97b47f 1f53a43 c97b47f 1f53a43 c97b47f 68c260d c97b47f 1f53a43 c97b47f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import streamlit as st
import arxiv
import requests
import os
from pathlib import Path
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from huggingface_hub import login, HfApi
import fitz # PyMuPDF
import pandas as pd
from collections import Counter
import re
import json
# Constants
MODEL_NAME = "google/flan-t5-large"
SECONDARY_MODEL = "facebook/bart-large-cnn"
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN", "your_username/<name>")
SPACE_NAME = f"unpaper/<name>" if not HUGGINGFACE_TOKEN.startswith("your_username") else f"your_username/<name>"
HF_API_URL = "https://huggingface.co/api/models"
# CSS
st.markdown("""
<style>
.main { background-color: #f5f5f5; }
.sidebar .sidebar-content { background-color: #ffffff; }
.badge {
background-color: #ff4b4b;
color: white;
padding: 5px 10px;
border-radius: 5px;
display: inline-block;
}
.warning {
background-color: #fff3cd;
color: #856404;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# Sidebar
st.sidebar.title("arXiv Paper Converter")
st.sidebar.header("Settings")
arxiv_id = st.sidebar.text_input("Enter arXiv ID", "2407.21783")
upload_pdf = st.sidebar.file_uploader("Upload PDF", type="pdf")
space_name = st.sidebar.text_input("Hugging Face Space Name", SPACE_NAME)
token = st.sidebar.text_input("Hugging Face Token", HUGGINGFACE_TOKEN, type="password")
model_choice = st.sidebar.selectbox("Select Model", ["Text-to-Text (FLAN-T5)", "Text Generation (BART)"])
# Login to Hugging Face
if token:
login(token=token)
# Fetch available models from Hugging Face API
@st.cache_data(ttl=3600)
def fetch_hf_models():
try:
response = requests.get(HF_API_URL, headers={"Authorization": f"Bearer {token}"})
if response.status_code == 200:
return response.json()
else:
st.warning("Failed to fetch models from Hugging Face API. Using default models.")
return None
except Exception as e:
st.warning(f"Error fetching models: {str(e)}. Using default models.")
return None
hf_models = fetch_hf_models()
# Initialize models
@st.cache_resource
def load_models():
if model_choice == "Text-to-Text (FLAN-T5)":
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
pipeline_model = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
else:
tokenizer = AutoTokenizer.from_pretrained(SECONDARY_MODEL)
model = AutoModelForSeq2SeqLM.from_pretrained(SECONDARY_MODEL)
pipeline_model = pipeline("summarization", model=model, tokenizer=tokenizer)
return tokenizer, model, pipeline_model
tokenizer, model, pipeline_model = load_models()
# Functions
def fetch_arxiv_paper(paper_id):
client = arxiv.Client()
search = arxiv.Search(id_list=[paper_id])
paper = next(client.results(search))
return paper
def download_pdf(paper, filename):
paper.download_pdf(filename=filename)
return filename
def extract_text_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text()
return text
def analyze_authors(text):
author_pattern = r"Author[s]?:\s*(.+?)(?:\n|$)"
authors = re.findall(author_pattern, text, re.IGNORECASE)
author_list = []
for author in authors:
names = author.split(',')
author_list.extend([name.strip() for name in names])
return Counter(author_list)
def process_text_with_model(text, task="summarize"):
if model_choice == "Text-to-Text (FLAN-T5)":
prompt = f"{task} the following text: {text[:1000]}"
result = pipeline_model(prompt, max_length=512, num_beams=4)
else:
result = pipeline_model(text[:1000], max_length=512, min_length=30, do_sample=False)
return result[0]['generated_text']
def create_huggingface_space(space_name, metadata):
api = HfApi()
try:
api.create_repo(repo_id=space_name, repo_type="space", space_sdk="static", private=False)
# Upload metadata
with open("metadata.json", "w") as f:
json.dump(metadata, f, indent=2)
api.upload_file(
path_or_fileobj="metadata.json",
path_in_repo="metadata.json",
repo_id=space_name,
repo_type="space"
)
api.upload_file(
path_or_fileobj="README.md",
path_in_repo="README.md",
repo_id=space_name,
repo_type="space"
)
return f"https://huggingface.co/spaces/{space_name}"
except Exception as e:
st.error(f"Failed to create space: {str(e)}")
return None
finally:
if os.path.exists("metadata.json"):
os.remove("metadata.json")
# Main App
st.title("arXiv Paper to Hugging Face Space Converter")
st.markdown("<div class='badge'>Beta Community - Open Discussion in Community Tab</div>", unsafe_allow_html=True)
# Warning about model usage
st.markdown("""
<div class='warning'>
<strong>Warning:</strong> Ensure you have proper permissions to use selected models.
Model outputs are stored in metadata and will be publicly visible in the space.
</div>
""", unsafe_allow_html=True)
# Process arXiv or PDF
if arxiv_id or upload_pdf:
if upload_pdf:
pdf_path = "temp.pdf"
with open(pdf_path, "wb") as f:
f.write(upload_pdf.getbuffer())
else:
paper = fetch_arxiv_paper(arxiv_id)
pdf_path = download_pdf(paper, "temp.pdf")
# Extract and analyze
text = extract_text_from_pdf(pdf_path)
author_analysis = analyze_authors(text)
# Model processing
summary = process_text_with_model(text, "summarize")
key_points = process_text_with_model(text, "extract key points" if model_choice == "Text-to-Text (FLAN-T5)" else "summarize")
# Display results
st.header("Paper Analysis")
st.subheader("Authors")
st.dataframe(pd.DataFrame.from_dict(author_analysis, orient='index', columns=['Count']))
st.subheader("AI Analysis")
st.write("Summary:", summary)
st.write("Key Points:", key_points)
# Enhanced metadata
metadata = {
"title": paper.title if arxiv_id else "Uploaded PDF",
"authors": list(author_analysis.keys()),
"arxiv_id": arxiv_id if arxiv_id else "N/A",
"model_analysis": {
"summary": summary,
"key_points": key_points,
"model_used": model_choice,
"model_name": MODEL_NAME if model_choice == "Text-to-Text (FLAN-T5)" else SECONDARY_MODEL,
"model_license": "Check model card on Hugging Face",
"processing_date": pd.Timestamp.now().isoformat()
},
"warnings": {
"model_usage": "Ensure proper model licensing",
"content_visibility": "All outputs will be public in space",
"data_source": "Verify arXiv/paper permissions"
}
}
# Create Space
if st.button("Create Hugging Face Space"):
space_url = create_huggingface_space(space_name, metadata)
if space_url:
st.success(f"Space created: {space_url}")
st.markdown(f"""
<a href="{space_url}" target="_blank">
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
alt="Hugging Face Space" width="150">
</a>
""", unsafe_allow_html=True)
# Cleanup
if os.path.exists("temp.pdf"):
os.remove("temp.pdf") |