katsukiai commited on
Commit
8eb49e4
·
verified ·
1 Parent(s): fa2d06b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -11
app.py CHANGED
@@ -7,17 +7,15 @@ from tqdm import tqdm
7
  import nltk
8
  from nltk.tokenize import word_tokenize
9
  from nltk.corpus import wordnet
10
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
11
  from huggingface_hub import HfApi, Repository, login
12
  from datasets import Dataset
13
  import pandas as pd
14
  from datetime import datetime
15
  import secrets
16
 
17
- # Download all NLTK data
18
  nltk.download('all')
19
 
20
- # Setup logging
21
  log_dir = "logs"
22
  os.makedirs(log_dir, exist_ok=True)
23
  logging.basicConfig(
@@ -26,7 +24,6 @@ logging.basicConfig(
26
  format='%(asctime)s - %(levelname)s - %(message)s'
27
  )
28
 
29
- # Error logging to Hugging Face
30
  error_dir = "errors"
31
  os.makedirs(error_dir, exist_ok=True)
32
  error_log_file = os.path.join(error_dir, f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
@@ -45,16 +42,13 @@ def log_error(error_msg):
45
  except Exception as e:
46
  logging.error(f"Failed to upload error log: {str(e)}")
47
 
48
- # Load Hugging Face models (300+ models available, using DeepSeek for long text)
49
  tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
50
- model = AutoModelForSeq2SeqLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
51
  meaning_generator = pipeline("text2text-generation", model="google/flan-t5-large")
52
 
53
- # Hugging Face login
54
  HF_TOKEN = os.getenv("HF_TOKEN", secrets.token_hex(16))
55
  login(token=HF_TOKEN)
56
 
57
- # Dataset preparation
58
  dataset_dir = "dataset"
59
  os.makedirs(dataset_dir, exist_ok=True)
60
  csv_file = os.path.join(dataset_dir, "deepfocus_data.csv")
@@ -77,7 +71,6 @@ def process_text_to_csv(input_text):
77
  log_error(f"Meaning generation failed for '{word}': {str(e)}")
78
  data.append({"tokenizer": tokens, "words": word, "meaning": meanings})
79
 
80
- # Save to CSV
81
  with open(csv_file, 'w', newline='', encoding='utf-8') as f:
82
  writer = csv.DictWriter(f, fieldnames=["tokenizer", "words", "meaning"])
83
  writer.writeheader()
@@ -119,7 +112,6 @@ def view_logs():
119
  log_error(f"Error in view_logs: {str(e)}")
120
  return f"Error: {str(e)}"
121
 
122
- # Gradio Interface
123
  with gr.Blocks(title="DeepFocus-X3") as demo:
124
  gr.Markdown("# DeepFocus-X3")
125
 
@@ -145,5 +137,4 @@ with gr.Blocks(title="DeepFocus-X3") as demo:
145
  view_logs_btn = gr.Button("View Logs")
146
  view_logs_btn.click(fn=view_logs, inputs=None, outputs=log_output)
147
 
148
- # Launch Gradio app
149
  demo.launch()
 
7
  import nltk
8
  from nltk.tokenize import word_tokenize
9
  from nltk.corpus import wordnet
10
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
11
  from huggingface_hub import HfApi, Repository, login
12
  from datasets import Dataset
13
  import pandas as pd
14
  from datetime import datetime
15
  import secrets
16
 
 
17
  nltk.download('all')
18
 
 
19
  log_dir = "logs"
20
  os.makedirs(log_dir, exist_ok=True)
21
  logging.basicConfig(
 
24
  format='%(asctime)s - %(levelname)s - %(message)s'
25
  )
26
 
 
27
  error_dir = "errors"
28
  os.makedirs(error_dir, exist_ok=True)
29
  error_log_file = os.path.join(error_dir, f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
 
42
  except Exception as e:
43
  logging.error(f"Failed to upload error log: {str(e)}")
44
 
 
45
  tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
46
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
47
  meaning_generator = pipeline("text2text-generation", model="google/flan-t5-large")
48
 
 
49
  HF_TOKEN = os.getenv("HF_TOKEN", secrets.token_hex(16))
50
  login(token=HF_TOKEN)
51
 
 
52
  dataset_dir = "dataset"
53
  os.makedirs(dataset_dir, exist_ok=True)
54
  csv_file = os.path.join(dataset_dir, "deepfocus_data.csv")
 
71
  log_error(f"Meaning generation failed for '{word}': {str(e)}")
72
  data.append({"tokenizer": tokens, "words": word, "meaning": meanings})
73
 
 
74
  with open(csv_file, 'w', newline='', encoding='utf-8') as f:
75
  writer = csv.DictWriter(f, fieldnames=["tokenizer", "words", "meaning"])
76
  writer.writeheader()
 
112
  log_error(f"Error in view_logs: {str(e)}")
113
  return f"Error: {str(e)}"
114
 
 
115
  with gr.Blocks(title="DeepFocus-X3") as demo:
116
  gr.Markdown("# DeepFocus-X3")
117
 
 
137
  view_logs_btn = gr.Button("View Logs")
138
  view_logs_btn.click(fn=view_logs, inputs=None, outputs=log_output)
139
 
 
140
  demo.launch()