Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,15 @@ from tqdm import tqdm
|
|
7 |
import nltk
|
8 |
from nltk.tokenize import word_tokenize
|
9 |
from nltk.corpus import wordnet
|
10 |
-
from transformers import AutoTokenizer,
|
11 |
from huggingface_hub import HfApi, Repository, login
|
12 |
from datasets import Dataset
|
13 |
import pandas as pd
|
14 |
from datetime import datetime
|
15 |
import secrets
|
16 |
|
17 |
-
# Download all NLTK data
|
18 |
nltk.download('all')
|
19 |
|
20 |
-
# Setup logging
|
21 |
log_dir = "logs"
|
22 |
os.makedirs(log_dir, exist_ok=True)
|
23 |
logging.basicConfig(
|
@@ -26,7 +24,6 @@ logging.basicConfig(
|
|
26 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
27 |
)
|
28 |
|
29 |
-
# Error logging to Hugging Face
|
30 |
error_dir = "errors"
|
31 |
os.makedirs(error_dir, exist_ok=True)
|
32 |
error_log_file = os.path.join(error_dir, f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
|
@@ -45,16 +42,13 @@ def log_error(error_msg):
|
|
45 |
except Exception as e:
|
46 |
logging.error(f"Failed to upload error log: {str(e)}")
|
47 |
|
48 |
-
# Load Hugging Face models (300+ models available, using DeepSeek for long text)
|
49 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
|
50 |
-
model =
|
51 |
meaning_generator = pipeline("text2text-generation", model="google/flan-t5-large")
|
52 |
|
53 |
-
# Hugging Face login
|
54 |
HF_TOKEN = os.getenv("HF_TOKEN", secrets.token_hex(16))
|
55 |
login(token=HF_TOKEN)
|
56 |
|
57 |
-
# Dataset preparation
|
58 |
dataset_dir = "dataset"
|
59 |
os.makedirs(dataset_dir, exist_ok=True)
|
60 |
csv_file = os.path.join(dataset_dir, "deepfocus_data.csv")
|
@@ -77,7 +71,6 @@ def process_text_to_csv(input_text):
|
|
77 |
log_error(f"Meaning generation failed for '{word}': {str(e)}")
|
78 |
data.append({"tokenizer": tokens, "words": word, "meaning": meanings})
|
79 |
|
80 |
-
# Save to CSV
|
81 |
with open(csv_file, 'w', newline='', encoding='utf-8') as f:
|
82 |
writer = csv.DictWriter(f, fieldnames=["tokenizer", "words", "meaning"])
|
83 |
writer.writeheader()
|
@@ -119,7 +112,6 @@ def view_logs():
|
|
119 |
log_error(f"Error in view_logs: {str(e)}")
|
120 |
return f"Error: {str(e)}"
|
121 |
|
122 |
-
# Gradio Interface
|
123 |
with gr.Blocks(title="DeepFocus-X3") as demo:
|
124 |
gr.Markdown("# DeepFocus-X3")
|
125 |
|
@@ -145,5 +137,4 @@ with gr.Blocks(title="DeepFocus-X3") as demo:
|
|
145 |
view_logs_btn = gr.Button("View Logs")
|
146 |
view_logs_btn.click(fn=view_logs, inputs=None, outputs=log_output)
|
147 |
|
148 |
-
# Launch Gradio app
|
149 |
demo.launch()
|
|
|
7 |
import nltk
|
8 |
from nltk.tokenize import word_tokenize
|
9 |
from nltk.corpus import wordnet
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
11 |
from huggingface_hub import HfApi, Repository, login
|
12 |
from datasets import Dataset
|
13 |
import pandas as pd
|
14 |
from datetime import datetime
|
15 |
import secrets
|
16 |
|
|
|
17 |
nltk.download('all')
|
18 |
|
|
|
19 |
log_dir = "logs"
|
20 |
os.makedirs(log_dir, exist_ok=True)
|
21 |
logging.basicConfig(
|
|
|
24 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
25 |
)
|
26 |
|
|
|
27 |
error_dir = "errors"
|
28 |
os.makedirs(error_dir, exist_ok=True)
|
29 |
error_log_file = os.path.join(error_dir, f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
|
|
|
42 |
except Exception as e:
|
43 |
logging.error(f"Failed to upload error log: {str(e)}")
|
44 |
|
|
|
45 |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
|
47 |
meaning_generator = pipeline("text2text-generation", model="google/flan-t5-large")
|
48 |
|
|
|
49 |
HF_TOKEN = os.getenv("HF_TOKEN", secrets.token_hex(16))
|
50 |
login(token=HF_TOKEN)
|
51 |
|
|
|
52 |
dataset_dir = "dataset"
|
53 |
os.makedirs(dataset_dir, exist_ok=True)
|
54 |
csv_file = os.path.join(dataset_dir, "deepfocus_data.csv")
|
|
|
71 |
log_error(f"Meaning generation failed for '{word}': {str(e)}")
|
72 |
data.append({"tokenizer": tokens, "words": word, "meaning": meanings})
|
73 |
|
|
|
74 |
with open(csv_file, 'w', newline='', encoding='utf-8') as f:
|
75 |
writer = csv.DictWriter(f, fieldnames=["tokenizer", "words", "meaning"])
|
76 |
writer.writeheader()
|
|
|
112 |
log_error(f"Error in view_logs: {str(e)}")
|
113 |
return f"Error: {str(e)}"
|
114 |
|
|
|
115 |
with gr.Blocks(title="DeepFocus-X3") as demo:
|
116 |
gr.Markdown("# DeepFocus-X3")
|
117 |
|
|
|
137 |
view_logs_btn = gr.Button("View Logs")
|
138 |
view_logs_btn.click(fn=view_logs, inputs=None, outputs=log_output)
|
139 |
|
|
|
140 |
demo.launch()
|