Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,135 +1,138 @@
|
|
1 |
-
import json
|
2 |
-
import logging
|
3 |
import os
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
-
from transformers import
|
8 |
from huggingface_hub import HfApi
|
9 |
|
10 |
-
#
|
11 |
-
logging.basicConfig(
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
logger.info(f"Loading model: {model_name} (CPU mode)")
|
35 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
-
tokenizer.pad_token = tokenizer.eos_token # Avoid padding token errors
|
37 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
38 |
-
return tokenizer, model
|
39 |
-
|
40 |
-
# Function to process text with selected model
|
41 |
-
def process_text(model_name, text):
|
42 |
-
tokenizer, model = load_model(model_name)
|
43 |
-
logger.info(f"Processing text with {model_name}...")
|
44 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
45 |
-
outputs = model.generate(**inputs, max_length=200)
|
46 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
-
|
48 |
-
# Function to convert text to JSON
|
49 |
-
def text_to_json(text):
|
50 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
51 |
-
filename = f"output_{timestamp}.json"
|
52 |
-
with open(filename, "w") as f:
|
53 |
-
json.dump([{"text": text}], f, indent=4)
|
54 |
-
logger.info(f"JSON file created: {filename}")
|
55 |
-
return filename
|
56 |
-
|
57 |
-
# Function to generate JSON and upload to Hugging Face
|
58 |
-
def generate_and_upload(model_name, text):
|
59 |
try:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
logger.info(f"Received text input for model {model_name}")
|
64 |
-
|
65 |
-
# Process text
|
66 |
-
processed_text = process_text(model_name, text)
|
67 |
-
logger.info(f"Processed text: {processed_text}")
|
68 |
-
|
69 |
-
# Convert to JSON
|
70 |
-
json_file = text_to_json(processed_text)
|
71 |
-
|
72 |
-
# Get Hugging Face API token
|
73 |
-
token = os.getenv("HUGGINGFACE_API_TOKEN")
|
74 |
-
if not token:
|
75 |
-
raise ValueError("Hugging Face API token not found. Please set HUGGINGFACE_API_TOKEN.")
|
76 |
-
|
77 |
-
# Upload file to Hugging Face
|
78 |
-
api = HfApi()
|
79 |
-
repo_id = "katsukiai/DeepFocus-X3"
|
80 |
-
upload_info = api.upload_file(
|
81 |
-
path_or_fileobj=json_file,
|
82 |
-
path_in_repo=f"convert/{os.path.basename(json_file)}",
|
83 |
-
repo_id=repo_id,
|
84 |
-
repo_type="dataset",
|
85 |
-
token=token
|
86 |
-
)
|
87 |
-
|
88 |
-
logger.info(f"File uploaded successfully: {upload_info}")
|
89 |
-
|
90 |
-
# Delete local JSON file after upload
|
91 |
-
os.remove(json_file)
|
92 |
-
logger.info(f"Deleted local file: {json_file}")
|
93 |
-
|
94 |
-
return f"Upload successful! Filename: {os.path.basename(json_file)}", None
|
95 |
-
|
96 |
except Exception as e:
|
97 |
-
|
98 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
with gr.Blocks() as demo:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
model_selector = gr.Dropdown(choices=MODEL_LIST, value="gpt2", label="Choose Model")
|
123 |
-
text_input = gr.Textbox(label="Enter text")
|
124 |
-
output_message = gr.Textbox(label="Status message")
|
125 |
-
json_file_downloader = gr.File(label="Download JSON", interactive=True)
|
126 |
-
generate_button = gr.Button("Generate and Upload")
|
127 |
-
|
128 |
-
generate_button.click(
|
129 |
-
fn=generate_and_upload,
|
130 |
-
inputs=[model_selector, text_input],
|
131 |
-
outputs=[output_message, json_file_downloader]
|
132 |
-
)
|
133 |
-
|
134 |
-
# Launch Gradio app
|
135 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
+
import csv
|
4 |
+
import shutil
|
5 |
+
import nltk
|
6 |
+
import pandas as pd
|
7 |
+
from tqdm import tqdm
|
8 |
import gradio as gr
|
9 |
+
from datasets import Dataset
|
10 |
+
from transformers import pipeline
|
11 |
from huggingface_hub import HfApi
|
12 |
|
13 |
+
# ---------------------- Logging Setup ----------------------
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
17 |
+
handlers=[logging.StreamHandler()]
|
18 |
+
)
|
19 |
+
|
20 |
+
# ---------------------- NLTK Setup ----------------------
|
21 |
+
def download_nltk():
|
22 |
+
nltk.download("words")
|
23 |
+
nltk.download("punkt")
|
24 |
+
logging.info("NLTK resources downloaded.")
|
25 |
+
|
26 |
+
download_nltk()
|
27 |
+
|
28 |
+
# ---------------------- Data Preparation ----------------------
|
29 |
+
def get_all_words():
|
30 |
+
from nltk.corpus import words as nltk_words
|
31 |
+
all_words = nltk_words.words()
|
32 |
+
logging.info(f"Got {len(all_words)} words from NLTK.")
|
33 |
+
return all_words
|
34 |
+
|
35 |
+
def generate_meaning(word, generator):
|
36 |
+
prompt = f"Define the word '{word}' in one concise sentence."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
try:
|
38 |
+
result = generator(prompt, max_length=50)[0]["generated_text"]
|
39 |
+
return result.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
except Exception as e:
|
41 |
+
logging.error(f"Error generating meaning for '{word}': {e}")
|
42 |
+
return ""
|
43 |
+
|
44 |
+
def process_words(model_name, limit=None):
|
45 |
+
logging.info("Initializing Hugging Face text2text-generation pipeline...")
|
46 |
+
generator = pipeline("text2text-generation", model=model_name, device=-1)
|
47 |
+
words_list = get_all_words()
|
48 |
+
if limit:
|
49 |
+
words_list = words_list[:limit]
|
50 |
+
data = []
|
51 |
+
for word in tqdm(words_list, desc="Processing words"):
|
52 |
+
tokens = nltk.word_tokenize(word)
|
53 |
+
meaning = generate_meaning(word, generator)
|
54 |
+
data.append({
|
55 |
+
"tokenizer": tokens,
|
56 |
+
"words": word,
|
57 |
+
"meaning": meaning
|
58 |
+
})
|
59 |
+
logging.info("Finished processing words.")
|
60 |
+
return data
|
61 |
+
|
62 |
+
def save_to_csv(data, filename="output.csv"):
|
63 |
+
df = pd.DataFrame(data)
|
64 |
+
df.to_csv(filename, index=False)
|
65 |
+
logging.info(f"Saved CSV to {filename}.")
|
66 |
+
return filename
|
67 |
|
68 |
+
# ---------------------- Push to Hugging Face ----------------------
|
69 |
+
def push_dataset(csv_file, repo_id="katsukiai/DeepFocus-X3"):
|
70 |
+
repo_local_dir = "DeepFocus-X3_repo"
|
71 |
+
if not os.path.exists(repo_local_dir):
|
72 |
+
os.system(f"git clone https://huggingface.co/{repo_id} {repo_local_dir}")
|
73 |
+
logging.info("Repository cloned locally.")
|
74 |
+
shutil.copy(csv_file, os.path.join(repo_local_dir, csv_file))
|
75 |
+
current_dir = os.getcwd()
|
76 |
+
os.chdir(repo_local_dir)
|
77 |
+
os.system("git add .")
|
78 |
+
os.system('git commit -m "Update dataset"')
|
79 |
+
os.system("git push")
|
80 |
+
os.chdir(current_dir)
|
81 |
+
logging.info("Pushed dataset to Hugging Face repository.")
|
82 |
+
|
83 |
+
def generate_all(model_name, word_limit):
|
84 |
+
try:
|
85 |
+
word_limit = int(word_limit)
|
86 |
+
except Exception:
|
87 |
+
word_limit = None
|
88 |
+
data = process_words(model_name, limit=word_limit)
|
89 |
+
csv_file = save_to_csv(data)
|
90 |
+
push_dataset(csv_file)
|
91 |
+
return csv_file
|
92 |
+
|
93 |
+
# ---------------------- Gradio Interface Functions ----------------------
|
94 |
+
def run_generate(model_name, word_limit):
|
95 |
+
output_csv = generate_all(model_name, word_limit)
|
96 |
+
return f"Generated and pushed CSV: {output_csv}"
|
97 |
+
|
98 |
+
def about_tab_content():
|
99 |
+
about_text = (
|
100 |
+
"## DeepFocus-X3 Dataset Generator\n\n"
|
101 |
+
"This tool downloads all available words from the NLTK corpus, "
|
102 |
+
"generates concise meanings using a Hugging Face text-to-text generation model, "
|
103 |
+
"and converts the data into a CSV file. Finally, it pushes the CSV to the "
|
104 |
+
"[katsukiai/DeepFocus-X3](https://huggingface.co/datasets/katsukiai/DeepFocus-X3) repository."
|
105 |
+
)
|
106 |
+
return about_text
|
107 |
+
|
108 |
+
def settings_tab_content():
|
109 |
+
settings_text = (
|
110 |
+
"**Current Settings**\n\n"
|
111 |
+
"- Model: `google/flan-t5-xl`\n"
|
112 |
+
"- Word Limit: 50 (set to empty to process all words)\n"
|
113 |
+
"\nYou can update these settings in the Generate tab."
|
114 |
+
)
|
115 |
+
return settings_text
|
116 |
+
|
117 |
+
# ---------------------- Gradio App ----------------------
|
118 |
with gr.Blocks() as demo:
|
119 |
+
gr.Markdown("## DeepFocus-X3 Dataset Generator")
|
120 |
+
|
121 |
+
with gr.Tabs():
|
122 |
+
# About Tab
|
123 |
+
with gr.Tab("About"):
|
124 |
+
gr.Markdown(about_tab_content())
|
125 |
+
|
126 |
+
# Generate All Tab
|
127 |
+
with gr.Tab("Generate all"):
|
128 |
+
model_name_input = gr.Textbox(value="google/flan-t5-xl", label="Hugging Face Model Name for Means")
|
129 |
+
word_limit_input = gr.Textbox(value="50", label="Word Limit (Leave empty for all)")
|
130 |
+
generate_button = gr.Button("Generate and Push Dataset")
|
131 |
+
generate_output = gr.Textbox(label="Output")
|
132 |
+
generate_button.click(run_generate, inputs=[model_name_input, word_limit_input], outputs=generate_output)
|
133 |
+
|
134 |
+
# Settings Tab
|
135 |
+
with gr.Tab("Settings"):
|
136 |
+
gr.Markdown(settings_tab_content())
|
137 |
+
|
138 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|