DeepFocusTrain / app.py
katsukiai's picture
Update app.py
fa2d06b verified
raw
history blame
5.52 kB
import os
import csv
import json
import logging
import gradio as gr
from tqdm import tqdm
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import wordnet
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from huggingface_hub import HfApi, Repository, login
from datasets import Dataset
import pandas as pd
from datetime import datetime
import secrets
# Download all NLTK data
nltk.download('all')
# Setup logging
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
logging.basicConfig(
filename=os.path.join(log_dir, f"app_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"),
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Error logging to Hugging Face
error_dir = "errors"
os.makedirs(error_dir, exist_ok=True)
error_log_file = os.path.join(error_dir, f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
def log_error(error_msg):
with open(error_log_file, 'a') as f:
f.write(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} - ERROR - {error_msg}\n")
try:
api = HfApi()
api.upload_file(
path_or_fileobj=error_log_file,
path_in_repo=f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log",
repo_id="katsukiai/errors",
repo_type="dataset"
)
except Exception as e:
logging.error(f"Failed to upload error log: {str(e)}")
# Load Hugging Face models (300+ models available, using DeepSeek for long text)
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
model = AutoModelForSeq2SeqLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
meaning_generator = pipeline("text2text-generation", model="google/flan-t5-large")
# Hugging Face login
HF_TOKEN = os.getenv("HF_TOKEN", secrets.token_hex(16))
login(token=HF_TOKEN)
# Dataset preparation
dataset_dir = "dataset"
os.makedirs(dataset_dir, exist_ok=True)
csv_file = os.path.join(dataset_dir, "deepfocus_data.csv")
def process_text_to_csv(input_text):
try:
tokens = word_tokenize(input_text.lower())
words = list(set(tokens))
data = []
for word in tqdm(words, desc="Processing words"):
meanings = []
synsets = wordnet.synsets(word)
if synsets:
meanings = [syn.definition() for syn in synsets[:3]]
else:
try:
generated_meaning = meaning_generator(f"Define the word '{word}'", max_length=100)[0]['generated_text']
meanings.append(generated_meaning)
except Exception as e:
log_error(f"Meaning generation failed for '{word}': {str(e)}")
data.append({"tokenizer": tokens, "words": word, "meaning": meanings})
# Save to CSV
with open(csv_file, 'w', newline='', encoding='utf-8') as f:
writer = csv.DictWriter(f, fieldnames=["tokenizer", "words", "meaning"])
writer.writeheader()
writer.writerows(data)
logging.info(f"Dataset saved to {csv_file}")
return data
except Exception as e:
log_error(f"Error in process_text_to_csv: {str(e)}")
raise
def upload_to_huggingface():
try:
dataset = Dataset.from_csv(csv_file)
dataset.push_to_hub("katsukiai/DeepFocus-X3", token=HF_TOKEN)
logging.info("Dataset uploaded to Hugging Face")
except Exception as e:
log_error(f"Error uploading to Hugging Face: {str(e)}")
raise
def generate_output(input_text):
try:
data = process_text_to_csv(input_text)
upload_to_huggingface()
return json.dumps(data, indent=2)
except Exception as e:
log_error(f"Error in generate_output: {str(e)}")
return f"Error: {str(e)}"
def view_logs():
try:
log_files = os.listdir(log_dir)
log_content = ""
for log_file in log_files:
with open(os.path.join(log_dir, log_file), 'r') as f:
log_content += f"\n\n--- {log_file} ---\n\n{f.read()}"
return log_content
except Exception as e:
log_error(f"Error in view_logs: {str(e)}")
return f"Error: {str(e)}"
# Gradio Interface
with gr.Blocks(title="DeepFocus-X3") as demo:
gr.Markdown("# DeepFocus-X3")
with gr.Tabs():
with gr.TabItem("About"):
gr.Markdown("""
## About DeepFocus-X3
This application processes text, tokenizes it, extracts unique words, generates meanings, and uploads the dataset to Hugging Face.
- Uses NLTK for tokenization and WordNet for meanings.
- Leverages DeepSeek AI for long text processing and Google FLAN-T5 for meaning generation.
- Logs all activities and errors, with error logs uploaded to Hugging Face.
""")
with gr.TabItem("Generate all"):
input_text = gr.Textbox(label="Input Text", lines=10)
output_json = gr.Textbox(label="Output JSON", lines=10)
generate_btn = gr.Button("Generate and Upload")
generate_btn.click(fn=generate_output, inputs=input_text, outputs=output_json)
with gr.TabItem("Logs"):
gr.Markdown("## Report using Logs")
log_output = gr.Textbox(label="Log Content", lines=20)
view_logs_btn = gr.Button("View Logs")
view_logs_btn.click(fn=view_logs, inputs=None, outputs=log_output)
# Launch Gradio app
demo.launch()